Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Med ; 12(8)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37109207

ABSTRACT

The complement system is crucial for immune surveillance, providing the body's first line of defence against pathogens. However, an imbalance in its regulators can lead to inappropriate overactivation, resulting in diseases such as age-related macular degeneration (AMD), a leading cause of irreversible blindness globally affecting around 200 million people. Complement activation in AMD is believed to begin in the choriocapillaris, but it also plays a critical role in the subretinal and retinal pigment epithelium (RPE) spaces. Bruch's membrane (BrM) acts as a barrier between the retina/RPE and choroid, hindering complement protein diffusion. This impediment increases with age and AMD, leading to compartmentalisation of complement activation. In this review, we comprehensively examine the structure and function of BrM, including its age-related changes visible through in vivo imaging, and the consequences of complement dysfunction on AMD pathogenesis. We also explore the potential and limitations of various delivery routes (systemic, intravitreal, subretinal, and suprachoroidal) for safe and effective delivery of conventional and gene therapy-based complement inhibitors to treat AMD. Further research is needed to understand the diffusion of complement proteins across BrM and optimise therapeutic delivery to the retina.

2.
Front Immunol ; 12: 714055, 2021.
Article in English | MEDLINE | ID: mdl-34434196

ABSTRACT

Cleavage of C3 to C3a and C3b plays a central role in the generation of complement-mediated defences. Although the thioester-mediated surface deposition of C3b has been well-studied, fluid phase dimers of C3 fragments remain largely unexplored. Here we show C3 cleavage results in the spontaneous formation of C3b dimers and present the first X-ray crystal structure of a disulphide-linked human C3d dimer. Binding studies reveal these dimers are capable of crosslinking complement receptor 2 and preliminary cell-based analyses suggest they could modulate B cell activation to influence tolerogenic pathways. Altogether, insights into the physiologically-relevant functions of C3d(g) dimers gained from our findings will pave the way to enhancing our understanding surrounding the importance of complement in the fluid phase and could inform the design of novel therapies for immune system disorders in the future.


Subject(s)
Complement C3d/chemistry , Models, Molecular , Protein Multimerization , Complement C3/chemistry , Complement C3/immunology , Complement C3d/immunology , Humans , Lymphocyte Activation/immunology , Lymphocytes/immunology , Lymphocytes/metabolism , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Conformation , Proteolysis , Recombinant Proteins/chemistry , Structure-Activity Relationship
3.
PLoS One ; 15(11): e0242284, 2020.
Article in English | MEDLINE | ID: mdl-33201897

ABSTRACT

X-linked choroideremia (CHM) is a disease characterized by gradual retinal degeneration caused by loss of the Rab Escort Protein, REP1. Despite partial compensation by REP2 the disease is characterized by prenylation defects in multiple members of the Rab protein family that are master regulators of membrane traffic. Remarkably, the eye is the only organ affected in CHM patients, possibly because of the huge membrane traffic burden of the post mitotic photoreceptors, which synthesise outer segments, and the adjacent retinal pigment epithelium that degrades the spent portions each day. In this study, we aimed to identify defects in membrane traffic that might lead to photoreceptor cell death in CHM. In a heterozygous null female mouse model of CHM (Chmnull/WT), degeneration of the photoreceptor layer was clearly evident from increased numbers of TUNEL positive cells compared to age matched controls, small numbers of cells exhibiting signs of mitochondrial stress and greatly increased microglial infiltration. However, most rod photoreceptors exhibited remarkably normal morphology with well-formed outer segments and no discernible accumulation of transport vesicles in the inner segment. The major evidence of membrane trafficking defects was a shortening of rod outer segments that was evident at 2 months of age but remained constant over the period during which the cells die. A decrease in rhodopsin density found in the outer segment may underlie the outer segment shortening but does not lead to rhodopsin accumulation in the inner segment. Our data argue against defects in rhodopsin transport or outer segment renewal as triggers of cell death in CHM.


Subject(s)
Apoptosis , Choroideremia/pathology , Photoreceptor Cells, Vertebrate/metabolism , Rod Cell Outer Segment/metabolism , Adaptor Proteins, Signal Transducing/deficiency , Adaptor Proteins, Signal Transducing/genetics , Animals , Choroideremia/metabolism , Disease Models, Animal , Female , Mice , Mice, Knockout , Microscopy, Electron, Transmission , Mitochondria/metabolism , Photoreceptor Cells, Vertebrate/ultrastructure , Rhodopsin/metabolism
4.
Proc Natl Acad Sci U S A ; 117(27): 15684-15693, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32571921

ABSTRACT

Mitochondria are known to play an essential role in photoreceptor function and survival that enables normal vision. Within photoreceptors, mitochondria are elongated and extend most of the inner-segment length, where they supply energy for protein synthesis and the phototransduction machinery in the outer segment, as well as acting as a calcium store. Here, we examined the arrangement of the mitochondria within the inner segment in detail using three-dimensional (3D) electron microscopy techniques and show they are tethered to the plasma membrane in a highly specialized arrangement. Remarkably, mitochondria and their cristae openings align with those of neighboring inner segments. The pathway by which photoreceptors meet their high energy demands is not fully understood. We propose this to be a mechanism to share metabolites and assist in maintaining homeostasis across the photoreceptor cell layer. In the extracellular space between photoreceptors, Müller glial processes were identified. Due to the often close proximity to the inner-segment mitochondria, they may, too, play a role in the inner-segment mitochondrial arrangement as well as metabolite shuttling. OPA1 is an important factor in mitochondrial homeostasis, including cristae remodeling; therefore, we examined the photoreceptors of a heterozygous Opa1 knockout mouse model. The cristae structure in the Opa1+/- photoreceptors was not greatly affected, but the mitochondria were enlarged and had reduced alignment to neighboring inner-segment mitochondria. This indicates the importance of key regulators in maintaining this specialized photoreceptor mitochondrial arrangement.


Subject(s)
GTP Phosphohydrolases/genetics , Mitochondria/genetics , Mitochondrial Membranes/ultrastructure , Vision, Ocular/genetics , Animals , Cell Membrane/genetics , Cell Membrane/ultrastructure , Ependymoglial Cells/metabolism , Ependymoglial Cells/ultrastructure , Humans , Mice , Microscopy, Electron , Mitochondria/ultrastructure , Mitochondrial Membranes/metabolism , Photoreceptor Cells/ultrastructure , Vision, Ocular/physiology
5.
Biosci Rep ; 39(3)2019 03 29.
Article in English | MEDLINE | ID: mdl-30733278

ABSTRACT

Myosin Va (MyoVa) is an actin-based molecular motor that plays key roles in the final stages of secretory pathways, including neurotransmitter release. Several studies have addressed how MyoVa coordinates the trafficking of secretory vesicles, but why this molecular motor is found in exosomes is still unclear. In this work, using a yeast two-hybrid screening system, we identified the direct interaction between the globular tail domain (GTD) of MyoVa and four protein components of exosomes: the WD repeat-containing protein 48 (WDR48), the cold shock domain-containing protein E1 (CSDE1), the tandem C2 domain-containing protein 1 (TC2N), and the enzyme spermine synthase (SMS). The interaction between the GTD of MyoVa and SMS was further validated in vitro and displayed a Kd in the low micromolar range (3.5 ± 0.5 µM). SMS localized together with MyoVa in cytoplasmic vesicles of breast cancer MCF-7 and neuroblastoma SH-SY5Y cell lines, known to produce exosomes. Moreover, MYO5A knockdown decreased the expression of SMS gene and rendered the distribution of SMS protein diffuse, supporting a role for MyoVa in SMS expression and targeting.


Subject(s)
Cytoplasmic Vesicles/metabolism , Exosomes/metabolism , Myosin Heavy Chains/metabolism , Myosin Type V/metabolism , Spermine Synthase/metabolism , Binding Sites , Cell Line, Tumor , Cells, Cultured , Exosomes/genetics , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Expression Regulation , Humans , MCF-7 Cells , Myosin Heavy Chains/genetics , Myosin Type V/genetics , Protein Binding , Protein Transport , RNA Interference , Spermine Synthase/genetics , Two-Hybrid System Techniques
6.
Proc Natl Acad Sci U S A ; 112(52): 15922-7, 2015 Dec 29.
Article in English | MEDLINE | ID: mdl-26668363

ABSTRACT

The outer segments of vertebrate rod photoreceptors are renewed every 10 d. Outer segment components are transported from the site of synthesis in the inner segment through the connecting cilium, followed by assembly of the highly ordered discs. Two models of assembly of discrete discs involving either successive fusion events between intracellular rhodopsin-bearing vesicles or the evagination of the plasma membrane followed by fusion of adjacent evaginations have been proposed. Here we use immuno-electron microscopy and electron tomography to show that rhodopsin is transported from the inner to the outer segment via the ciliary plasma membrane, subsequently forming successive evaginations that "zipper" up proximally, but at their leading edges are free to make junctions containing the protocadherin, PCDH21, with the inner segment plasma membrane. Given the physical dimensions of the evaginations, coupled with likely instability of the membrane cortex at the distal end of the connecting cilium, we propose that the evagination occurs via a process akin to blebbing and is not driven by actin polymerization. Disassembly of these junctions is accompanied by fusion of the leading edges of successive evaginations to form discrete discs. This fusion is topologically different to that mediated by the membrane fusion proteins, SNAREs, as initial fusion is between exoplasmic leaflets, and is accompanied by gain of the tetraspanin rim protein, peripherin.


Subject(s)
Cadherins/metabolism , Cell Membrane/metabolism , Photoreceptor Cells/metabolism , Retinal Photoreceptor Cell Inner Segment/metabolism , Retinal Rod Photoreceptor Cells/metabolism , Animals , Cadherin Related Proteins , Cell Membrane/ultrastructure , Cryoelectron Microscopy , Electron Microscope Tomography , Eye/metabolism , Eye/ultrastructure , Eye Proteins/metabolism , Mice, Inbred C57BL , Microscopy, Immunoelectron , Munc18 Proteins/metabolism , Nerve Tissue Proteins/metabolism , Photoreceptor Cells/ultrastructure , Qa-SNARE Proteins/metabolism , Retinal Photoreceptor Cell Inner Segment/ultrastructure , Retinal Rod Photoreceptor Cells/ultrastructure , Rhodopsin/metabolism , Rod Cell Outer Segment/metabolism , Rod Cell Outer Segment/ultrastructure
7.
PLoS One ; 10(3): e0121440, 2015.
Article in English | MEDLINE | ID: mdl-25799540

ABSTRACT

PURPOSE: The aim of this study was to investigate the interaction and co-localization of novel interacting proteins with the Leber congenital amaurosis (LCA) associated protein aryl hydrocarbon receptor interacting protein-like 1 (AIPL1). METHODS: The CytoTrapXR yeast two-hybrid system was used to screen a bovine retinal cDNA library. A novel interaction between AIPL1 and members of the family of EB proteins was confirmed by directed yeast two-hybrid analysis and co-immunoprecipitation assays. The localization of AIPL1 and the EB proteins in cultured cells and in retinal cryosections was examined by immunofluorescence microscopy and cryo-immunogold electron microscopy. RESULTS: Yeast two-hybrid (Y2H) analysis identified the interaction between AIPL1 and the EB proteins, EB1 and EB3. EB1 and EB3 were specifically co-immunoprecipitated with AIPL1 from SK-N-SH neuroblastoma cells. In directed 1:1 Y2H analysis, the interaction of EB1 with AIPL1 harbouring the LCA-causing mutations A197P, C239R and W278X was severely compromised. Immunofluorescent confocal microscopy revealed that AIPL1 did not co-localize with endogenous EB1 at the tips of microtubules, endogenous EB1 at the microtubule organising centre following disruption of the microtubule network, or with endogenous ß-tubulin. Moreover, AIPL1 did not localize to primary cilia in ARPE-19 cells, whereas EB1 co-localized with the centrosomal marker pericentrin at the base of primary cilia. However, both AIPL1 and the EB proteins, EB1 and EB3, co-localized with centrin-3 in the connecting cilium of photoreceptor cells. Cryo-immunogold electron microscopy confirmed the co-localization of AIPL1 and EB1 in the connecting cilia in human retinal photoreceptors. CONCLUSIONS: AIPL1 and the EB proteins, EB1 and EB3, localize at the connecting cilia of retinal photoreceptor cells, but do not co-localize in the cellular microtubule network or in primary cilia in non-retinal cells. These findings suggest that AIPL1 function in these cells is not related to the role of EB proteins in microtubule dynamics or primary ciliogenesis, but that their association may be related to a specific role in the specialized cilia apparatus of retinal photoreceptors.


Subject(s)
Carrier Proteins/metabolism , Eye Proteins/metabolism , Leber Congenital Amaurosis/metabolism , Microtubule-Associated Proteins/metabolism , Photoreceptor Cells/metabolism , Adaptor Proteins, Signal Transducing , Animals , Carrier Proteins/genetics , Cells, Cultured , Eye Proteins/genetics , Humans , Mice , Microtubules/metabolism
8.
J Cell Sci ; 127(Pt 17): 3852-61, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-25074813

ABSTRACT

Defects in phagocytosis and degradation of photoreceptor outer segments (POS) by the retinal pigment epithelium (RPE) are associated with aging and retinal disease. The daily burst of rod outer segment (ROS) phagocytosis by the RPE provides a unique opportunity to analyse phagosome processing in vivo. In mouse retinae, phagosomes containing stacked rhodopsin-rich discs were identified by immuno-electron microscopy. Early apical phagosomes stained with antibodies against both cytoplasmic and intradiscal domains of rhodopsin. During phagosome maturation, a remarkably synchronised loss of the cytoplasmic epitope coincided with movement to the cell body and preceded phagosome-lysosome fusion and disc degradation. Loss of the intradiscal rhodopsin epitope and disc digestion occurred upon fusion with cathepsin-D-positive lysosomes. The same sequential stages of phagosome maturation were identified in cultured RPE and macrophages challenged with isolated POS. Loss of the cytoplasmic rhodopsin epitope was insensitive to pH but sensitive to protease inhibition and coincided with the interaction of phagosomes with endosomes. Thus, during pre-lysosomal maturation of ROS-containing phagosomes, limited rhodopsin processing occurs upon interaction with endosomes. This potentially provides a sensitive readout of phagosome-endosome interactions that is applicable to multiple phagocytes.


Subject(s)
Endosomes/metabolism , Phagocytosis/physiology , Phagosomes/metabolism , Retinal Pigment Epithelium/metabolism , Rhodopsin/metabolism , Animals , Cell Separation , Lysosomes/metabolism , Macrophages/metabolism , Mice, Inbred C57BL , Retinal Pigment Epithelium/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...