Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Cell Rep ; 38(2): 110224, 2022 01 11.
Article in English | MEDLINE | ID: mdl-35021091

ABSTRACT

Plants respond to higher temperatures by the action of heat stress (HS) transcription factors (Hsfs), which control the onset, early response, and long-term acclimation to HS. Members of the HsfA1 subfamily, such as tomato HsfA1a, are the central regulators of HS response, and their activity is fine-tuned by other Hsfs. We identify tomato HsfA7 as capacitor of HsfA1a during the early HS response. Upon a mild temperature increase, HsfA7 is induced in an HsfA1a-dependent manner. The subsequent interaction of the two Hsfs prevents the stabilization of HsfA1a resulting in a negative feedback mechanism. Under prolonged or severe HS, HsfA1a and HsfA7 complexes stimulate the induction of genes required for thermotolerance. Therefore, HsfA7 exhibits a co-repressor mode at mild HS by regulating HsfA1a abundance to moderate the upregulation of HS-responsive genes. HsfA7 undergoes a temperature-dependent transition toward a co-activator of HsfA1a to enhance the acquired thermotolerance capacity of tomato plants.


Subject(s)
Heat Shock Transcription Factors/genetics , Solanum lycopersicum/genetics , Trans-Activators/genetics , Acclimatization , Arabidopsis , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , DNA-Binding Proteins/metabolism , Gene Expression/genetics , Gene Expression Regulation, Plant/genetics , Heat Shock Transcription Factors/metabolism , Heat-Shock Proteins/metabolism , Heat-Shock Response/genetics , Hot Temperature , Solanum lycopersicum/metabolism , Plant Proteins/genetics , Plants, Genetically Modified/metabolism , Thermotolerance/genetics , Trans-Activators/metabolism , Transcription Factors/metabolism
2.
Genes (Basel) ; 11(6)2020 06 12.
Article in English | MEDLINE | ID: mdl-32545654

ABSTRACT

Temperature elevations constitute a major threat to plant performance. In recent years, much was learned about the general molecular mode of heat stress reaction of plants. The current research focuses on the integration of the knowledge into more global networks, including the reactions of cellular compartments. For instance, chloroplast function is central for plant growth and survival, and the performance of chloroplasts is tightly linked to the general status of the cell and vice versa. We examined the changes in photosynthesis, chloroplast morphology and proteomic composition posed in Arabidopsisthaliana chloroplasts after a single or repetitive heat stress treatment over a period of two weeks. We observed that the acclimation is potent in the case of repetitive application of heat stress, while a single stress results in lasting alterations. Moreover, the physiological capacity and its adjustment are dependent on the efficiency of the protein translocation process as judged from the analysis of mutants of the two receptor units of the chloroplast translocon, TOC64, and TOC33. In response to repetitive heat stress, plants without TOC33 accumulate Hsp70 proteins and plants without TOC64 have a higher content of proteins involved in thylakoid structure determination when compared to wild-type plants.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Heat-Shock Response/genetics , Membrane Proteins/genetics , Arabidopsis/growth & development , Chloroplasts/genetics , HSP72 Heat-Shock Proteins/genetics , Photosynthesis/genetics , Proteomics
3.
New Phytol ; 225(3): 1297-1310, 2020 02.
Article in English | MEDLINE | ID: mdl-31556121

ABSTRACT

Wild relatives of crops thrive in habitats where environmental conditions can be restrictive for productivity and survival of cultivated species. The genetic basis of this variability, particularly for tolerance to high temperatures, is not well understood. We examined the capacity of wild and cultivated accessions to acclimate to rapid temperature elevations that cause heat stress (HS). We investigated genotypic variation in thermotolerance of seedlings of wild and cultivated accessions. The contribution of polymorphisms associated with thermotolerance variation was examined regarding alterations in function of the identified gene. We show that tomato germplasm underwent a progressive loss of acclimation to strong temperature elevations. Sensitivity is associated with intronic polymorphisms in the HS transcription factor HsfA2 which affect the splicing efficiency of its pre-mRNA. Intron splicing in wild species results in increased synthesis of isoform HsfA2-II, implicated in the early stress response, at the expense of HsfA2-I which is involved in establishing short-term acclimation and thermotolerance. We propose that the selection for modern HsfA2 haplotypes reduced the ability of cultivated tomatoes to rapidly acclimate to temperature elevations, but enhanced their short-term acclimation capacity. Hence, we provide evidence that alternative splicing has a central role in the definition of plant fitness plasticity to stressful conditions.


Subject(s)
Alternative Splicing/genetics , Domestication , Genetic Variation , RNA Precursors/genetics , Solanum lycopersicum/genetics , Solanum lycopersicum/physiology , Thermotolerance/genetics , Acclimatization , Alleles , Base Sequence , Genome-Wide Association Study , Haplotypes/genetics , Heat-Shock Response , Introns/genetics , Polymorphism, Genetic , Protein Isoforms/metabolism , Protein Stability , Protein Transport , RNA Precursors/metabolism , Seedlings/physiology , Temperature
4.
Plant Cell Environ ; 42(3): 874-890, 2019 03.
Article in English | MEDLINE | ID: mdl-30187931

ABSTRACT

Plants code for a multitude of heat stress transcription factors (Hsfs). Three of them act as central regulators of heat stress (HS) response in tomato (Solanum lycopersicum). HsfA1a regulates the initial response, and HsfA2 controls acquired thermotolerance. HsfB1 is a transcriptional repressor but can also act as co-activator of HsfA1a. Currently, the mode of action and the relevance of the dual function of HsfB1 remain elusive. We examined this in HsfB1 overexpression or suppression transgenic tomato lines. Proteome analysis revealed that HsfB1 overexpression stimulates the co-activator function of HsfB1 and consequently the accumulation of HS-related proteins under non-stress conditions. Plants with enhanced levels of HsfB1 show aberrant growth and development but enhanced thermotolerance. HsfB1 suppression has no significant effect prior to stress. Upon HS, HsfB1 suppression strongly enhances the induction of heat shock proteins due to the higher activity of other HS-induced Hsfs, resulting in increased thermotolerance compared with wild-type. Thereby, HsfB1 acts as co-activator of HsfA1a for several Hsps, but as a transcriptional repressor on other Hsfs, including HsfA1b and HsfA2. The dual function explains the activation of chaperones to enhance protection and regulate the balance between growth and stress response upon deviations from the homeostatic levels of HsfB1.


Subject(s)
Heat-Shock Response/physiology , Plant Proteins/physiology , Repressor Proteins/physiology , Solanum lycopersicum/metabolism , Transcription Factors/physiology , Electrophoresis, Gel, Two-Dimensional , Solanum lycopersicum/growth & development , Solanum lycopersicum/physiology , Plants, Genetically Modified , Real-Time Polymerase Chain Reaction
5.
Bio Protoc ; 7(11): e2315, 2017 Jun 05.
Article in English | MEDLINE | ID: mdl-34541080

ABSTRACT

We established and elaborated on a method to enrich the membrane proteome of mature pollen from economically relevant crop using the example of Solanum lycopersicum (tomato). To isolate the pollen protein fraction enriched in membrane proteins, a high salt concentration (750 mM of sodium chloride) was used. The membrane protein-enriched fraction was then subjected to shotgun proteomics for identification of proteins, followed by in silico analysis to annotate and classify the detected proteins.

6.
DNA Res ; 24(2): 205-217, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28025318

ABSTRACT

Alternative splicing (AS) is a key control mechanism influencing signal response cascades in different developmental stages and under stress conditions. In this study, we examined heat stress (HS)-induced AS in the heat sensitive pollen tissue of two tomato cultivars. To obtain the entire spectrum of HS-related AS, samples taken directly after HS and after recovery were combined and analysed by RNA-seq. For nearly 9,200 genes per cultivar, we observed at least one AS event under HS. In comparison to control, for one cultivar we observed 76% more genes with intron retention (IR) or exon skipping (ES) under HS. Furthermore, 2,343 genes had at least one transcript with IR or ES accumulated under HS in both cultivars. These genes are involved in biological processes like protein folding, gene expression and heat response. Transcriptome assembly of these genes revealed that most of the alternative spliced transcripts possess truncated coding sequences resulting in partial or total loss of functional domains. Moreover, 141 HS specific and 22 HS repressed transcripts were identified. Further on, we propose AS as layer of stress response regulating constitutively expressed genes under HS by isoform abundance.


Subject(s)
Alternative Splicing , Hot Temperature , Pollen/genetics , Solanum lycopersicum/genetics , Stress, Physiological , Gene Expression Profiling , Gene Expression Regulation, Plant , Solanum lycopersicum/metabolism , Solanum lycopersicum/physiology , Plant Proteins/genetics , Pollen/metabolism , Pollen/physiology , Signal Transduction
7.
Plant Reprod ; 29(1-2): 81-91, 2016 06.
Article in English | MEDLINE | ID: mdl-27022919

ABSTRACT

KEY MESSAGE: Importance of the UPR for pollen. Pollen is particularly sensitive to environmental conditions that disturb protein homeostasis, such as higher temperatures. Their survival is dependent on subcellular stress response systems, one of which maintains protein homeostasis in the endoplasmic reticulum (ER). Disturbance of ER proteostasis due to stress leads to the activation of the unfolded protein response (UPR) that mitigates stress damage mainly by increasing ER-folding capacity and reducing folding demands. The UPR is controlled by ER membrane-associated transcription factors and an RNA splicing factor. They are important components of abiotic stress responses including general heat stress response and thermotolerance. In addition to responding to environmental stresses, the UPR is implicated in developmental processes required for successful male gametophyte development and fertilization. Consequently, defects in the UPR can lead to pollen abortion and male sterility. Several UPR components are involved in the elaboration of the ER network, which is required for pollen germination and polar tube growth. Transcriptome and proteome analyses have shown that components of the ER-folding machinery and the UPR are upregulated at specific stages of pollen development supporting elevated demands for secretion. Furthermore, genetic studies have revealed that knockout mutants of UPR genes are defective in producing viable or competitive pollen. In this review, we discuss recent findings regarding the importance of the UPR for both pollen development and stress response.


Subject(s)
Heat-Shock Response , Pollen/growth & development , Thermotolerance , Unfolded Protein Response , Endoplasmic Reticulum/metabolism , Protein Folding , Stress, Physiological
8.
Plant Reprod ; 29(1-2): 93-105, 2016 06.
Article in English | MEDLINE | ID: mdl-27016360

ABSTRACT

KEY MESSAGE: Pollen thermotolerance. Global warming is predicted to increase the frequency and severity of extreme weather phenomena such as heat waves thereby posing a major threat for crop productivity and food security. The yield in case of most crop species is dependent on the success of reproductive development. Pollen development has been shown to be highly sensitive to elevated temperatures while the development of the female gametophyte as well as sporophytic tissues might also be disturbed under mild or severe heat stress conditions. Therefore, assessing pollen thermotolerance is currently of high interest for geneticists, plant biologists and breeders. A key aspect in pollen thermotolerance studies is the selection of the appropriate heat stress regime, the developmental stage that the stress is applied to, as well as the method of application. Literature search reveals a rather high variability in heat stress treatments mainly due to the lack of standardized protocols for different plant species. In this review, we summarize and discuss experimental approaches that have been used in various crops, with special focus on tomato, rice and wheat, as the best studied crops regarding pollen thermotolerance. The overview of stress treatments and the major outcomes of each study aim to provide guidelines for similar research in other crops.


Subject(s)
Crops, Agricultural/physiology , Hot Temperature , Pollen/physiology , Thermotolerance , Stress, Physiological
9.
Plant Physiol ; 170(4): 2461-77, 2016 04.
Article in English | MEDLINE | ID: mdl-26917685

ABSTRACT

Male reproductive tissues are more sensitive to heat stress (HS) compared to vegetative tissues, but the basis of this phenomenon is poorly understood. Heat stress transcription factors (Hsfs) regulate the transcriptional changes required for protection from HS In tomato (Solanum lycopersicum), HsfA2 acts as coactivator of HsfA1a and is one of the major Hsfs accumulating in response to elevated temperatures. The contribution of HsfA2 in heat stress response (HSR) and thermotolerance was investigated in different tissues of transgenic tomato plants with suppressed HsfA2 levels (A2AS). Global transcriptome analysis and immunodetection of two major Hsps in vegetative and reproductive tissues showed that HsfA2 regulates subsets of HS-induced genes in a tissue-specific manner. Accumulation of HsfA2 by a moderate HS treatment enhances the capacity of seedlings to cope with a subsequent severe HS, suggesting an important role for HsfA2 in regulating acquired thermotolerance. In pollen, HsfA2 is an important coactivator of HsfA1a during HSR HsfA2 suppression reduces the viability and germination rate of pollen that received the stress during the stages of meiosis and microspore formation but had no effect on more advanced stages. In general, pollen meiocytes and microspores are characterized by increased susceptibility to HS due to their lower capacity to induce a strong HSR This sensitivity is partially mitigated by the developmentally regulated expression of HsfA2 and several HS-responsive genes mediated by HsfA1a under nonstress conditions. Thereby, HsfA2 is an important factor for the priming process that sustains pollen thermotolerance during microsporogenesis.


Subject(s)
DNA-Binding Proteins/metabolism , Gene Expression Regulation, Plant , Heat-Shock Proteins/metabolism , Heat-Shock Response , Plant Proteins/metabolism , Solanum lycopersicum/physiology , Transcription Factors/metabolism , DNA-Binding Proteins/genetics , Flowers/genetics , Flowers/growth & development , Flowers/physiology , Gametogenesis, Plant , Gene Expression Profiling , Gene Expression Regulation, Developmental , Heat Shock Transcription Factors , Heat-Shock Proteins/genetics , Hot Temperature , Solanum lycopersicum/genetics , Solanum lycopersicum/growth & development , Organ Specificity , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/physiology , Plant Proteins/genetics , Plants, Genetically Modified , Pollen/genetics , Pollen/growth & development , Pollen/physiology , Seedlings/genetics , Seedlings/growth & development , Seedlings/physiology , Thermotolerance , Transcription Factors/genetics
10.
J Proteomics ; 131: 48-60, 2016 Jan 10.
Article in English | MEDLINE | ID: mdl-26455813

ABSTRACT

Pollen cells possess specialized cellular compartments separated by membranes. Consequently, mature pollen contains proteinaceous factors for inter- and intracellular transport of metabolites or ions to facilitate the upcoming energy exhausting processes - germination and fertilization. Despite the current advancement in the understanding of pollen development little is known about the role and molecular nature of the membrane proteome that participates in functioning and development of male gametophyte. We dissected the membrane proteome of mature pollen from economically important crop Solanum lycopersicum (tomato). Isolated membrane fractions from mature pollen of two tomato cultivars (cv. Moneymaker and cv. Red setter) were subjected to shotgun proteomics (GEL-LC-Orbitrap-MS). The global tomato protein assignment was achieved by mapping the peptides on reference genome (cv. Heinz 1706) and de novo assembled transcriptome based on mRNA sequencing from the respective cultivar. We identified 687 proteins, where 176 were assigned as putative membrane proteins. About 58% of the identified membrane proteins participate in transport processes. In depth analysis revealed proteins corresponding to energy related pathways (Glycolysis and Krebs cycle) as prerequisite for mature pollen, thereby revealing a reliable model of energy reservoir of the male gametophyte. BIOLOGICAL SIGNIFICANCE: Mature pollen plays an indispensable role in plant fertility and crop production. To decipher the functionality of pollen global proteomics studies have been undertaken. However, these datasets are deficient in membrane proteins due to their low abundance and solubility. The work presented here provides a comprehensive investigation of membrane proteome of male gametophyte of an agriculturally important crop plant tomato. The analysis of membrane enriched fractions from two tomato cultivars ensured an effective profiling of the pollen membrane proteome. Particularly proteins of the Krebs cycle or the glycolysis process have been detected and thus a model for the energy dynamics and preparedness of the male gametophyte for the upcoming events - germination and fertilization is provided.


Subject(s)
Gene Expression Profiling/methods , Membrane Proteins/metabolism , Plant Proteins/metabolism , Pollen/metabolism , Proteome/metabolism , Solanum lycopersicum/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...