Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Membranes (Basel) ; 13(12)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38132895

ABSTRACT

Pentameric ligand-gated ion channels (pLGICs) are expressed throughout the central and peripheral nervous systems of vertebrates and modulate many aspects of human health and disease. Recent structural and computational data indicate that cation-selective pLGICs contain a long helical extension (MA) of one of the transmembrane helices. The MA helix has been shown to affect both the membrane expression of, and ion conductance levels through, these pLGICs. Here we probe the functional effects of 68 mutations in the MA region of the α4ß2 nicotinic acetylcholine receptor (nAChR), using a voltage-sensitive membrane dye and radioligand binding to measure receptor function and expression/assembly. We found seven alanine mutations in a stretch of the MA helix that prevent correct receptor folding and/or assembly, as evidenced by the lack of both function and ligand binding. A further two alanine mutations resulted in receptors that were capable of binding ligand but showed no functional response, and we propose that, in these mutants, ligand binding is insufficient to trigger channel opening. The data clarify the effect of the MA helix, and as the effects of some of our mutations in the α4ß2 nAChR differ from the effects of equivalent mutations in other cation-selective pLGICs, we suggest that residues in the MA helix may play subtly different roles in different receptors.

2.
Biomolecules ; 12(9)2022 09 07.
Article in English | MEDLINE | ID: mdl-36139090

ABSTRACT

GABAAρ receptors are a subfamily of the GABAA receptor family of pentameric ligand-gated ion channels (pLGICs). Each subunit has a common structure, including a transmembrane domain of four α-helices (M1-M4). The aim of this study was to identify important M1 residues in the GABAAρ receptor (GABAAρR), using mutagenesis and functional assays combined with bioinformatic approaches. Alanine substitution of 12 of the 23 M1 residues yielded receptors with altered functional parameters, indicating these residues contribute to GABAAρR function. Further mutations reveal the properties that are important for function in critical residues, and, using a GABAAρR homology model, we suggest amino acid interactions that could be important. Phylogenetic analysis comparing GABAAR and other pLGICs subunits reveals most M1 residue properties linked to GABAAρR function are ancestrally ancient, but some are more recent acquisitions. Multiple sequence alignment of M1 residues across GABAAR subunits reveal three residues are well conserved except in GABAAR α subunits. Substitution of ρ1 subunit residues to their α1 subunit equivalents showed one alters functional parameters. Overall, the data provide a comprehensive picture of M1 residues that contribute to GABAAρR function, and illustrate how they might do so.


Subject(s)
Receptors, GABA-A , gamma-Aminobutyric Acid , Alanine , Amino Acid Sequence , Amino Acids , Models, Molecular , Phylogeny , Receptors, GABA-A/metabolism
3.
ACS Chem Neurosci ; 13(15): 2338-2345, 2022 08 03.
Article in English | MEDLINE | ID: mdl-35867037

ABSTRACT

5-HT3 receptors are members of the family of pentameric ligand-gated ion channels. Each subunit has an extracellular, transmembrane, and intracellular domain. Only part of the intracellular domain structure has been solved, revealing it contains two α-helical segments; one, the MA helix, is an extension of M4, while the other, the MX helix, is formed from residues located close to the end of M3. This MX helix is in distinct locations in open and closed receptor structures, suggesting it may play a role in function. Here, we explore this hypothesis using functional responses of Ala-substituted mutant receptors expressed in HEK293 cells. The data show altering many of the MX residues results in a small decrease in EC50 (up to 5-fold), although in one (H232A) this is increased. Radiolabeled ligand binding on selected mutants showed no change in binding affinity, indicating an effect on gating and not binding. In addition, five mutations (P316A, V317A, P318A, D319A, and H323A) initially resulted in nonfunctional receptors, but the function could be rescued by coexpression with a chaperone protein, suggesting a likely role in assembly or folding. Examination of previously obtained MD simulation data shows that the extent of MX encompassed by membrane lipids differs considerably in the open and closed structures, suggesting that lipid-protein interactions in this region could have a major effect on channel opening propensity. We conclude that the MX helix can modulate the function of the receptor and propose that its interactions with membrane lipids play a major role in this.


Subject(s)
Receptors, Serotonin, 5-HT3 , Serotonin , Amino Acid Sequence , HEK293 Cells , Humans , Membrane Lipids , Receptors, Serotonin, 5-HT3/genetics , Receptors, Serotonin, 5-HT3/metabolism
4.
Front Physiol ; 13: 850782, 2022.
Article in English | MEDLINE | ID: mdl-35600303

ABSTRACT

The role of the outermost helix (M4) in the pentameric ligand-gated ion channel (pLGIC) family is currently not fully understood. It is known that M4 is important for receptor assembly, possibly via interactions with neighboring M1 and M3 helices. M4 can also transmit information on the lipid content of the membrane to the gating mechanism, and it may form a link to the extracellular domain via the Cys-loop. Our previous study examining the α4ß2 nACh receptor M4 helix using HEK cells indicated M4 here is more sensitive to change than those of other pLGIC. Many of these other studies, however, were performed in Xenopus oocytes. Here we examine the nine previously identified nonfunctional α4ß2 nACh receptor M4 mutant receptors using this system. The data reveal that seven of these mutant receptors do function when expressed in oocytes, with only 2, the conserved Asp at the intracellular end of M4 and a Phe in the center, having a similar phenotype (nonfunctional) in both HEK cells and oocytes. The oocyte data are more consistent with studies in other pLGIC and demonstrate the importance of the expression system used. Of the many differences between these two expression systems, we suggest that the different lipid content of the plasma membrane is a possible candidate for explaining these discrepancies.

5.
Front Mol Biosci ; 8: 644720, 2021.
Article in English | MEDLINE | ID: mdl-33996899

ABSTRACT

Pentameric ligand-gated ion channels (pLGICs) mediate fast synaptic transmission and are crucial drug targets. Their gating mechanism is triggered by ligand binding in the extracellular domain that culminates in the opening of a hydrophobic gate in the transmembrane domain. This domain is made of four α-helices (M1 to M4). Recently the outer lipid-facing helix (M4) has been shown to be key to receptor function, however its role in channel opening is still poorly understood. It could act through its neighboring helices (M1/M3), or via the M4 tip interacting with the pivotal Cys-loop in the extracellular domain. Mutation of a single M4 tyrosine (Y441) to alanine renders one pLGIC-the 5-HT3A receptor-unable to function despite robust ligand binding. Using Y441A as a proxy for M4 function, we here predict likely paths of Y441 action using molecular dynamics, and test these predictions with functional assays of mutant receptors in HEK cells and Xenopus oocytes using fluorescent membrane potential sensitive dye and two-electrode voltage clamp respectively. We show that Y441 does not act via the M4 tip or Cys-loop, but instead connects radially through M1 to a residue near the ion channel hydrophobic gate on the pore-lining helix M2. This demonstrates the active role of the M4 helix in channel opening.

6.
ACS Chem Neurosci ; 12(1): 133-139, 2021 01 06.
Article in English | MEDLINE | ID: mdl-33295751

ABSTRACT

Nicotinic acetylcholine receptors (nAChR) are the archetypal members of the pentameric ligand-gated ion channel (pLGIC) family, an important class of cell signaling proteins. In all members of this family, each of the five subunits has four transmembrane α-helices (M1-M4), with M2 lining the pore, then M1 and M3, and with M4 outermost and adjacent to the membrane lipids. Despite its remote location, M4 contributes both to receptor assembly and gating in pLGICs where it has been examined. This study probes the role of M4 residues in the α4ß2 nAChR using site-directed mutagenesis to individually mutate each residue to alanine, followed by expression in HEK293 cells and then characterization using membrane potential sensitive dye and radioligand binding. Two of the resulting mutant receptors showed altered EC50s, while 13 were nonfunctional, although coexpression with the chaperones RIC3 and nAChO resulted in 4 of these responding to agonist. Of the remaining 9, radioligand binding with epibatidine showed that 8 were expressed, suggesting these residues may play a role in channel opening. These data differ from similar studies in other pLGIC, where few or no Ala mutants in M4 ablate function, and they suggest that the α4ß2 nAChR M4 may play a more significant role than in related receptors.


Subject(s)
Ligand-Gated Ion Channels , Receptors, Nicotinic , HEK293 Cells , Humans , Membrane Potentials , Models, Molecular , Mutagenesis, Site-Directed , Receptors, Nicotinic/genetics
7.
ACS Chem Neurosci ; 11(17): 2658-2665, 2020 09 02.
Article in English | MEDLINE | ID: mdl-32786326

ABSTRACT

Prolines in signaling proteins are of particular interest because they have a range of unique properties that may be critical for function. Here we show that many proline residues in the extracellular domain (ECD) of the glycine receptor are involved in the correct functioning of this ligand-gated ion channel. We explore their role by creating mutant receptors, expressing them in cells, and using fluorescent membrane potential sensitive dye to monitor receptor activity. We then interpret the changes in receptor parameters using structural information from the open and closed states of the receptor. The data reveal that substitution with alanine of ten of the 13 Pro residues in the ECD alters the function of the receptor: one substitution ablates function, six cause a decrease in the EC50, and three cause an increase. Only three of these mutants result in EC50 values similar to WT. The nonfunctional mutant, Pro30Ala, was further probed in oocytes, and the data suggest a role in both expression and function. Examination of the locations of sensitive Pro residues in the receptor and identification of potential interactions with nearby residues reveal how these residues could contribute to the correct functioning of this typical pentameric ligand-gated ion channel.


Subject(s)
Proline , Receptors, Glycine , Amino Acid Sequence , Glycine , Models, Molecular , Proline/genetics , Receptors, Glycine/genetics , Receptors, Glycine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...