Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Res Metr Anal ; 8: 1078971, 2023.
Article in English | MEDLINE | ID: mdl-37034419

ABSTRACT

The development of effective vaccines in <1 year to combat the spread of coronavirus disease 19 (COVID-19) is an example of particularly rapid progress in biomedicine. However, this was only made possible by decades of investment in scientific research. Many important research commentaries and reviews have been provided to describe the various contributions and scientific breakthroughs that led to the development of COVID-19 vaccines. In this work, we sought to complement those efforts by adding a systematic and quantitative study of the research foundations that led to these vaccines. Here, we analyzed citations from COVID-19 vaccine research articles to determine which scientific areas of study contributed the most to this research. Our findings revealed that coronavirus research was cited most often, and by a large margin. However, significant contributions were also seen from a diverse set of fields such as cancer, diabetes, and HIV/AIDS. In addition, we examined the publication history of the most prolific authors of COVID-19 vaccine research to determine their research expertise prior to the pandemic. Interestingly, although COVID-19 vaccine research relied most heavily on previous coronavirus work, we find that the most prolific authors on these publications most often had expertise in other areas including influenza, cancer, and HIV/AIDS. Finally, we used machine learning to identify and group together publications based on their major topic areas. This allowed us to elucidate the differences in citations between research areas. These findings highlight and quantify the relevance of prior research from a variety of scientific fields to the rapid development of a COVID-19 vaccine. This study also illustrates the importance of funding and sustaining a diverse research enterprise to facilitate a rapid response to future pandemics.

2.
Front Med Technol ; 3: 714682, 2021.
Article in English | MEDLINE | ID: mdl-35178527

ABSTRACT

Technological advances, lack of medical professionals, high cost of face-to-face encounters, and disasters such as the COVID-19 pandemic fuel the telemedicine revolution. Numerous smartphone apps have been developed to measure neurological functions. However, their psychometric properties are seldom determined. It is unclear which designs underlie the eventual clinical utility of the smartphone tests. We have developed the smartphone Neurological Function Tests Suite (NeuFun-TS) and are systematically evaluating their psychometric properties against the gold standard of complete neurological examination digitalized into the NeurExTM app. This article examines the fifth and the most complex NeuFun-TS test, the "Spiral tracing." We generated 40 features in the training cohort (22 healthy donors [HD] and 89 patients with multiple sclerosis [MS]) and compared their intraclass correlation coefficient, fold change between HD and MS, and correlations with relevant clinical and imaging outcomes. We assembled the best features into machine-learning models and examined their performance in the independent validation cohort (45 patients with MS). We show that by involving multiple neurological functions, complex tests such as spiral tracing are susceptible to intra-individual variations, decreasing their reproducibility and clinical utility. Simple tests, reproducibly measuring single function(s) that can be aggregated to increase sensitivity, are preferable in app design.

3.
PLoS One ; 15(4): e0232169, 2020.
Article in English | MEDLINE | ID: mdl-32353013

ABSTRACT

Approximately one fourth of the Earth's Northern Hemisphere is underlain by permafrost, earth materials (soil, organic matter, or bedrock), that has been continuously frozen for at least two consecutive years. Numerous studies point to evidence of accelerated climate warming in the Arctic and sub-Arctic where permafrost is located. Changes to permafrost biochemical processes may critically impact ecosystem processes at the landscape scale. Here, we sought to understand how the permafrost metabolome responds to thaw and how this response differs based on location (i.e. chronosequence of permafrost formation constituting diverse permafrost types). We analyzed metabolites from microbial cells originating from Alaskan permafrost. Overall, permafrost thaw induced a shift in microbial metabolic processes. Of note were the dissimilarities in biochemical structure between frozen and thawed samples. The thawed permafrost metabolomes from different locations were highly similar. In the intact permafrost, several metabolites with antagonist properties were identified, illustrating the competitive survival strategy required to survive a frozen state. Interestingly, the intensity of these antagonistic metabolites decreased with warmer temperature, indicating a shift in ecological strategies in thawed permafrost. These findings illustrate the impact of change in temperature and spatial variability as permafrost undergoes thaw, knowledge that will become crucial for predicting permafrost biogeochemical dynamics as the Arctic and Antarctic landscapes continue to warm.


Subject(s)
Permafrost/chemistry , Permafrost/microbiology , Antarctic Regions , Arctic Regions , Ecosystem , Metabolome/physiology , Soil , Soil Microbiology , Temperature
4.
Int J Phytoremediation ; 21(10): 958-968, 2019.
Article in English | MEDLINE | ID: mdl-31016985

ABSTRACT

Decades of live-fire training exercises have left millions of acres of military training lands contaminated with various munitions constituents such as dinitrotoluene. Those that pose a threat to higher organisms due to their toxicity and mobility in the soil are of particular concern. Plants aid in the biodegradation and phytoextraction of contaminants, and site-specific ecotoxicity determinations are critical to inform effective remediation strategy. These ecotoxicity determinations are lacking in cold-adapted plants and would be very informative for contaminated training lands in cold regions. Therefore, we conducted a phytotoxicity study to determine the median effective concentration (EC50) of 2,4-dinitrotoluene (2,4-DNT) to four native Alaskan plant species in a sub-Arctic soil at two different temperatures. Plant species investigated were white spruce (Picea glauca), field locoweed (Oxytropis campestris), bluejoint grass (Calamagrostis canadensis), and Jacob's ladder (Polemonium pulcherrimum). Seedling emergence, fresh plant mass, and dry plant mass were used to model plant response to 2,4-DNT contamination. White spruce was most tolerant to 2,4-DNT contamination (EC50 = 130.8 mg kg-1) and field locoweed was least tolerant (EC50 = 0.38 mg kg-1). In general, Arctic plant species were more vulnerable to 2,4-DNT when compared to plant types native to temperate or tropical regions.


Subject(s)
Dinitrobenzenes , Soil Pollutants , Biodegradation, Environmental , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...