Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 7(39): 21898-906, 2015 Oct 07.
Article in English | MEDLINE | ID: mdl-26378593

ABSTRACT

We report the investigation of the photovoltaic properties of core-shell GaN/InGaN wires. The radial structure is grown on m-plane {11̅00} facets of self-assembled c̅-axis GaN wires elaborated by metal-organic vapor phase epitaxy (MOVPE) on sapphire substrates. The conversion efficiency of wires with radial shell composed of thick In0.1Ga0.9N layers and of 30× In0.18Ga0.82N/GaN quantum wells are compared. We also investigate the impact of the contact nature and layout on the carrier collection and photovoltaic performances. The contact optimization results in an improved conversion efficiency of 0.33% and a fill factor of 83% under 1 sun (AM1.5G) on single wires with a quantum well-based active region. Photocurrent spectroscopy demonstrates that the response ascribed to the absorption of InGaN/GaN quantum wells appears at wavelengths shorter than 440 nm.

2.
Nanotechnology ; 25(25): 255201, 2014 Jun 27.
Article in English | MEDLINE | ID: mdl-24897006

ABSTRACT

We report a systematic experimental and theoretical investigation of core-shell InGaN/GaN single wire light-emitting diodes (LEDs) using electron beam induced current (EBIC) microscopy. The wires were grown by catalyst-free MOVPE and processed into single wire LEDs using electron beam lithography on dispersed wires. The influence of the acceleration voltage and of the applied bias on the EBIC maps was investigated. We show that the EBIC maps provide information both on the minority carrier effects (i.e. on the local p-n junction collection efficiency) and on the majority carrier effects (i.e. the transport efficiency from the excited region toward the contacts). Because of a finite core and shell resistance a non-negligible current redistribution into the p-n junction takes place during the majority carrier transport. A theoretical model for transport in a core-shell wire is developed, allowing to explain the dependence of the EBIC profiles on the experimental parameters (the electron beam acceleration voltage and the bias applied on the device) and on the structural parameters of the wire (core and shell resistance, shunt resistance, etc). Comparison between simulated and experimental profiles provides valuable information concerning the structure inhomogeneities and gives insight into the wire electrical parameters.

3.
Nano Lett ; 14(6): 3515-20, 2014 Jun 11.
Article in English | MEDLINE | ID: mdl-24837282

ABSTRACT

We report the fabrication of a photonic platform consisting of single wire light-emitting diodes (LED) and photodetectors optically coupled by waveguides. MOVPE-grown (metal-organic vapor-phase epitaxy) InGaN/GaN p-n junction core-shell nanowires have been used for device fabrication. To achieve a good spectral matching between the emission wavelength and the detection range, different active regions containing either five narrow InGaN/GaN quantum wells or one wide InGaN segment were employed for the LED and the detector, respectively. The communication wavelength is ∼400 nm. The devices are realized by means of electron beam lithography on Si/SiO2 templates and connected by ∼100 µm long nonrectilinear SiN waveguides. The photodetector current trace shows signal variation correlated with the LED on/off switching with a fast transition time below 0.5 s.

SELECTION OF CITATIONS
SEARCH DETAIL