Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 2077, 2022 02 08.
Article in English | MEDLINE | ID: mdl-35136139

ABSTRACT

More than a year after the start of the pandemic, COVID-19 remains a global health emergency. Although the immune response against SARS-CoV-2 has been extensively studied, some points remain controversial. One is the role of antibodies in viral clearance and modulation of disease severity. While passive transfer of neutralizing antibodies protects against SARS-CoV-2 infection in animal models, titers of anti-SARS-CoV-2 antibodies have been reported to be higher in patients suffering from more severe forms of the disease. A second key question for pandemic management and vaccine design is the persistence of the humoral response. Here, we characterized the antibody response in 187 COVID-19 patients, ranging from asymptomatic individuals to patients who died from COVID-19, and including patients who recovered. We developed in-house ELISAs to measure titers of IgG, IgM and IgA directed against the RBD or N regions in patient serum or plasma, and a spike-pseudotyped neutralization assay to analyse seroneutralization. Higher titers of virus-specific antibodies were detected in patients with severe COVID-19, including deceased patients, compared to asymptomatic patients. This demonstrates that fatal infection is not associated with defective humoral response. Finally, most of recovered patients still had anti-SARS-CoV-2 IgG more than 3 months after infection.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Immunity, Humoral , SARS-CoV-2/immunology , Adult , Aged , COVID-19/mortality , Female , Humans , Male , Middle Aged
2.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Article in English | MEDLINE | ID: mdl-35091472

ABSTRACT

Microbes have been coevolving with their host for millions of years, exploiting host resources to their own benefit. We show that viral and bacterial pathogens convergently evolved to hijack cellular mitogen-activated protein kinase (MAPK) p90-ribosomal S6-kinases (RSKs). Theiler's virus leader (L) protein binds RSKs and prevents their dephosphorylation, thus maintaining the kinases active. Recruitment of RSKs enables L-protein-mediated inhibition of eukaryotic translation initiation factor 2 alpha kinase 2 (EIF2AK2 or PKR) and stress granule formation. Strikingly, ORF45 protein of Kaposi's sarcoma-associated herpesvirus (KSHV) and YopM protein of Yersinia use the same peptide motif as L to recruit and activate RSKs. All three proteins interact with a conserved surface-located loop of RSKs, likely acting as an allosteric regulation site. Some unrelated viruses and bacteria thus evolved to harness RSKs in a common fashion, yet to target distinct aspects of innate immunity. As documented for Varicella zoster virus ORF11, additional pathogens likely evolved to hijack RSKs, using a similar short linear motif.


Subject(s)
Host Microbial Interactions/physiology , Ribosomal Protein S6 Kinases, 90-kDa/genetics , Bacteria/pathogenicity , Bacterial Infections/genetics , Bacterial Infections/metabolism , Biological Evolution , Cell Line , Gene Expression Regulation, Viral/genetics , Host Microbial Interactions/genetics , Humans , Immediate-Early Proteins/genetics , MAP Kinase Signaling System/physiology , Mitogen-Activated Protein Kinase Kinases/metabolism , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Virus Diseases/genetics , Virus Diseases/metabolism , Virus Replication/physiology , Viruses/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL
...