Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroscience ; 543: 37-48, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38401710

ABSTRACT

Abnormal cognitive and sensorial properties have been reported in patients with psychiatric and neurodevelopmental conditions, such as attention deficit hyperactivity disorder (ADHD). ADHD patients exhibit impaired dopaminergic signaling and plasticity in brain areas related to cognitive and sensory processing. The spontaneous hypertensive rat (SHR), in comparison to the Wistar Kyoto rat (WKY), is the most used genetic animal model to study ADHD. Brain neurotrophic factor (BDNF), critical for midbrain and hippocampal dopaminergic neuron survival and differentiation, is reduced in both ADHD subjects and SHR. Physical exercise (e.g. swimming) promotes neuroplasticity and improves cognition by increasing BDNF and irisin. Here we investigate the effects of gestational swimming on sensorial and behavioral phenotypes, striatal dopaminergic parameters, and hippocampal FNDC5/irisin and BDNF levels observed in WKY and SHR. Gestational swimming improved nociception in SHR rats (p = 0.006) and increased hippocampal BDNF levels (p = 0.02) in a sex-dependent manner in adolescent offspring. Sex differences were observed in hippocampal FNDC5/irisin levels (p = 0.002), with females presenting lower levels than males. Our results contribute to the notion that swimming during pregnancy is a promising alternative to improve ADHD phenotypes in the offspring.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Humans , Rats , Female , Male , Animals , Adolescent , Brain-Derived Neurotrophic Factor/metabolism , Fibronectins , Nociception , Brain/metabolism , Rats, Inbred SHR , Rats, Inbred WKY , Disease Models, Animal
2.
Physiol Behav ; 261: 114071, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36584765

ABSTRACT

Anabolic-androgenic steroids (AAS) and caffeine can induce several behavioral alterations in humans and rodents. Administration of nandrolone decanoate is known to affect defensive responses to aversive stimuli, generally decreasing inhibitory control and increasing aggressivity but whether caffeine intake influences behavioral changes induced by AAS is unknown. The present study aimed to investigate behavioral effects of caffeine (a non-selective antagonist of adenosine receptors) alone or combined with nandrolone decanoate (one of the most commonly AAS abused) in female and male Lister Hooded rats. Our results indicated that chronic administration of nandrolone decanoate (10 mg/kg, i.m., once a week for 8 weeks) decreased risk assessment/anxiety-like behaviors (in the elevated plus maze test), regardless of sex. These effects were prevented by combined caffeine intake (0.1 g/L, p.o., ad libitum). Overall, the present study heralds a key role for caffeine intake in the modulation of nandrolone decanoate-induced behavioral changes in rats, suggesting adenosine receptors as candidate targets to manage impact of AAS on brain function and behavior.


Subject(s)
Anabolic Agents , Anabolic Androgenic Steroids , Nandrolone Decanoate , Receptors, Purinergic P1 , Animals , Female , Male , Rats , Anabolic Agents/pharmacology , Anabolic Androgenic Steroids/pharmacology , Anxiety/chemically induced , Caffeine/pharmacology , Nandrolone Decanoate/pharmacology , Receptors, Purinergic P1/metabolism
3.
Proc Natl Acad Sci U S A ; 116(30): 15253-15261, 2019 07 23.
Article in English | MEDLINE | ID: mdl-31285343

ABSTRACT

Because the white matter of the cerebral cortex contains axons that connect distant neurons in the cortical gray matter, the relationship between the volumes of the 2 cortical compartments is key for information transmission in the brain. It has been suggested that the volume of the white matter scales universally as a function of the volume of the gray matter across mammalian species, as would be expected if a global principle of wiring minimization applied. Using a systematic analysis across several mammalian clades, here we show that the volume of the white matter does not scale universally with the volume of the gray matter across mammals and is not optimized for wiring minimization. Instead, the ratio between volumes of gray and white matter is universally predicted by the same equation that predicts the degree of folding of the cerebral cortex, given the clade-specific scaling of cortical thickness, such that the volume of the gray matter (or the ratio of gray to total cortical volumes) divided by the square root of cortical thickness is a universal function of total cortical volume, regardless of the number of cortical neurons. Thus, the very mechanism that we propose to generate cortical folding also results in compactness of the white matter to a predictable degree across a wide variety of mammalian species.


Subject(s)
Cerebral Cortex/anatomy & histology , Gray Matter/anatomy & histology , Neurons/cytology , White Matter/anatomy & histology , Animals , Artiodactyla/anatomy & histology , Artiodactyla/physiology , Cerebral Cortex/cytology , Cerebral Cortex/physiology , Connectome , Gray Matter/cytology , Gray Matter/physiology , Humans , Neurons/physiology , Organ Size/physiology , Organ Specificity , Primates/anatomy & histology , Primates/physiology , Rodentia/anatomy & histology , Rodentia/physiology , Scandentia/anatomy & histology , Scandentia/physiology , White Matter/cytology , White Matter/physiology
4.
Front Neuroanat ; 11: 118, 2017.
Article in English | MEDLINE | ID: mdl-29311850

ABSTRACT

Carnivorans are a diverse group of mammals that includes carnivorous, omnivorous and herbivorous, domesticated and wild species, with a large range of brain sizes. Carnivory is one of several factors expected to be cognitively demanding for carnivorans due to a requirement to outsmart larger prey. On the other hand, large carnivoran species have high hunting costs and unreliable feeding patterns, which, given the high metabolic cost of brain neurons, might put them at risk of metabolic constraints regarding how many brain neurons they can afford, especially in the cerebral cortex. For a given cortical size, do carnivoran species have more cortical neurons than the herbivorous species they prey upon? We find they do not; carnivorans (cat, mongoose, dog, hyena, lion) share with non-primates, including artiodactyls (the typical prey of large carnivorans), roughly the same relationship between cortical mass and number of neurons, which suggests that carnivorans are subject to the same evolutionary scaling rules as other non-primate clades. However, there are a few important exceptions. Carnivorans stand out in that the usual relationship between larger body, larger cortical mass and larger number of cortical neurons only applies to small and medium-sized species, and not beyond dogs: we find that the golden retriever dog has more cortical neurons than the striped hyena, African lion and even brown bear, even though the latter species have up to three times larger cortices than dogs. Remarkably, the brown bear cerebral cortex, the largest examined, only has as many neurons as the ten times smaller cat cerebral cortex, although it does have the expected ten times as many non-neuronal cells in the cerebral cortex compared to the cat. We also find that raccoons have dog-like numbers of neurons in their cat-sized brain, which makes them comparable to primates in neuronal density. Comparison of domestic and wild species suggests that the neuronal composition of carnivoran brains is not affected by domestication. Instead, large carnivorans appear to be particularly vulnerable to metabolic constraints that impose a trade-off between body size and number of cortical neurons.

5.
Front Neuroanat ; 9: 64, 2015.
Article in English | MEDLINE | ID: mdl-26082686

ABSTRACT

There is a strong trend toward increased brain size in mammalian evolution, with larger brains composed of more and larger neurons than smaller brains across species within each mammalian order. Does the evolution of increased numbers of brain neurons, and thus larger brain size, occur simply through the selection of individuals with more and larger neurons, and thus larger brains, within a population? That is, do individuals with larger brains also have more, and larger, neurons than individuals with smaller brains, such that allometric relationships across species are simply an extension of intraspecific scaling? Here we show that this is not the case across adult male mice of a similar age. Rather, increased numbers of neurons across individuals are accompanied by increased numbers of other cells and smaller average cell size of both types, in a trade-off that explains how increased brain mass does not necessarily ensue. Fundamental regulatory mechanisms thus must exist that tie numbers of neurons to numbers of other cells and to average cell size within individual brains. Finally, our results indicate that changes in brain size in evolution are not an extension of individual variation in numbers of neurons, but rather occur through step changes that must simultaneously increase numbers of neurons and cause cell size to increase, rather than decrease.

6.
Front Neuroanat ; 8: 46, 2014.
Article in English | MEDLINE | ID: mdl-24971054

ABSTRACT

What explains the superior cognitive abilities of the human brain compared to other, larger brains? Here we investigate the possibility that the human brain has a larger number of neurons than even larger brains by determining the cellular composition of the brain of the African elephant. We find that the African elephant brain, which is about three times larger than the human brain, contains 257 billion (10(9)) neurons, three times more than the average human brain; however, 97.5% of the neurons in the elephant brain (251 billion) are found in the cerebellum. This makes the elephant an outlier in regard to the number of cerebellar neurons compared to other mammals, which might be related to sensorimotor specializations. In contrast, the elephant cerebral cortex, which has twice the mass of the human cerebral cortex, holds only 5.6 billion neurons, about one third of the number of neurons found in the human cerebral cortex. This finding supports the hypothesis that the larger absolute number of neurons in the human cerebral cortex (but not in the whole brain) is correlated with the superior cognitive abilities of humans compared to elephants and other large-brained mammals.

SELECTION OF CITATIONS
SEARCH DETAIL
...