Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38158534

ABSTRACT

The honey bee is an important pollinator insect susceptible to environmental contaminants. We investigated the effects of a waste fire event on elemental content, oxidative stress, and metabolic response in bees fed different nutrients (probiotics, Quassia amara, and placebo). The level of the elements was also investigated in honey and beeswax. Our data show a general increase in elemental concentrations in all bee groups after the event; however, the administration of probiotics and Quassia amara help fight oxidative stress in bees. Significantly lower concentrations of Ni, S, and U for honey in the probiotic group and a general and significant decrease in elemental concentrations for beeswax in the probiotic group and Li in the Quassia amara group were observed after the fire waste event. The comparison of the metabolic profiles through pre- and post-event PCA analyses showed that bees treated with different feeds react differently to the environmental event. The greatest differences in metabolic profiles are observed between the placebo-fed bees compared to the others. This study can help to understand how some stress factors can affect the health of bees and to take measures to protect these precious insects.

2.
Chemosphere ; 308(Pt 1): 136261, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36057357

ABSTRACT

Bees are precious living beings for our planet. Thanks to their essential service of pollination, these insects allow the maintenance of biodiversity and the variety and amount of food available. Unfortunately, we are observing an increasingly devastating reduction of bee families and other pollinating insects for factors related to human activities, environmental pollution, diseases and parasites, compromise of natural habitats, and climate change. We show that probiotics can protect bees from element pollution. We collected bees, beeswax, honey, pollen, and propolis directly from hives in a rural area of central Italy to investigate the content of 41 elements in control (not supplemented with probiotics) and experimental (supplemented with probiotics) groups. Our data show a significantly lower concentration of some elements (Ba, Be, Cd, Ce, Co, Cu, Pb, Sn, Tl, and U) in experimental bees than in control groups, indicating a possible beneficial effect of probiotics in reducing the absorption of chemicals. This study presents the first data on element levels after probiotics have been fed to bees and provides the basis for future research in several activities relating to the environment, agriculture, economy, territory, and medicine.


Subject(s)
Probiotics , Propolis , Animals , Cadmium , Humans , Insecta , Lead , Pollination
SELECTION OF CITATIONS
SEARCH DETAIL