Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
iScience ; 27(1): 108696, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38205246

ABSTRACT

Muscular dystrophies (MDs) are incurable genetic myopathies characterized by progressive degeneration of skeletal muscles. Dystrophic mice lacking the transcription factor Nfix display morphological and functional improvements of the disease. Recently, we demonstrated that MAPK signaling pathway positively regulates Nfix in muscle development and that Cyanidin, a natural antioxidant molecule, strongly ameliorates the pathology. To explore a synergistic approach aimed at treating MDs, we administered Trametinib, a clinically approved MEK inhibitor, alone or combined with Cyanidin to adult Sgca null mice. We observed that chronic treatment with Trametinib and Cyanidin reduced Nfix in myogenic cells but, unexpectedly, caused ectopic calcifications exclusively in dystrophic muscles. The combined treatment with Cyanidin resulted in histological improvements by preventing Trametinib-induced calcifications in Diaphragm and Soleus. Collectively, this first pilot study revealed that Nfix is modulated by the MAPK pathway in MDs, and that Cyanidin partly rescued the unexpected ectopic calcifications caused by MEK inhibition.

2.
Acta Physiol (Oxf) ; 239(2): e13981, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37186371

ABSTRACT

AIMS: Nfix is a transcription factor belonging to the Nuclear Factor I (NFI) family comprising four members (Nfia, b, c, x). Nfix plays important roles in the development and function of several organs. In muscle development, Nfix controls the switch from embryonic to fetal myogenesis by promoting fast twitching fibres. In the adult muscle, following injury, lack of Nfix impairs regeneration, inducing higher content of slow-twitching fibres. Nfix is expressed also in the heart, but its function has been never investigated before. We studied Nfix role in this organ. METHODS: Using Nfix-null and wild type (WT) mice we analyzed: (1) the expression pattern of Nfix during development by qPCR and (2) the functional alterations caused by its absence, by in vivo telemetry and in vitro patch clamp analysis. RESULTS AND CONCLUSIONS: Nfix expression start in the heart from E12.5. Adult hearts of Nfix-null mice show a hearts morphology and sarcomeric proteins expression similar to WT. However, Nfix-null animals show tachycardia that derives form an intrinsic higher beating rate of the sinus node (SAN). Molecular and functional analysis revealed that sinoatrial cells of Nfix-null mice express a significantly larger L-type calcium current (Cacna1d + Cacna1c). Interestingly, downregulation of Nfix by sh-RNA in primary cultures of neonatal rat ventricular cardiomyocytes induced a similar increase in their spontaneous beating rate and in ICaL current. In conclusion, our data provide the first demonstration of a role of Nfix that, increasing the L-type calcium current, modulates heart rate.

3.
Cell Rep ; 42(1): 111992, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36662619

ABSTRACT

Insights into the evolution of non-model organisms are limited by the lack of reference genomes of high accuracy, completeness, and contiguity. Here, we present a chromosome-level, karyotype-validated reference genome and pangenome for the barn swallow (Hirundo rustica). We complement these resources with a reference-free multialignment of the reference genome with other bird genomes and with the most comprehensive catalog of genetic markers for the barn swallow. We identify potentially conserved and accelerated genes using the multialignment and estimate genome-wide linkage disequilibrium using the catalog. We use the pangenome to infer core and accessory genes and to detect variants using it as a reference. Overall, these resources will foster population genomics studies in the barn swallow, enable detection of candidate genes in comparative genomics studies, and help reduce bias toward a single reference genome.


Subject(s)
Swallows , Animals , Swallows/genetics , Metagenomics , Genome/genetics , Genomics , Chromosomes
4.
J Pathol ; 257(3): 352-366, 2022 07.
Article in English | MEDLINE | ID: mdl-35297529

ABSTRACT

Muscular dystrophies are genetic diseases characterized by chronic inflammation and fibrosis. Macrophages are immune cells that sustain muscle regeneration upon acute injury but seem deleterious in the context of chronic muscle injury such as in muscular dystrophies. Here, we observed that the number of macrophages expressing the transcription factor Nfix increases in two distinct mouse models of muscular dystrophies. We showed that the deletion of Nfix in macrophages in dystrophic mice delays the establishment of fibrosis and muscle wasting, and increases grasp force. Macrophages lacking Nfix expressed more TNFα and less TGFß1, thus promoting apoptosis of fibro-adipogenic progenitors. Moreover, pharmacological treatment of dystrophic mice with a ROCK inhibitor accelerated fibrosis through the increase of Nfix expression by macrophages. Thus, we have identified Nfix as a macrophage profibrotic factor in muscular dystrophies, whose inhibition could be a therapeutic route to reduce severity of the dystrophic disease. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Macrophages , Muscular Dystrophies , NFI Transcription Factors , Animals , Fibrosis , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Macrophages/metabolism , Macrophages/pathology , Mice , Mice, Inbred mdx , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Dystrophies/metabolism , Muscular Dystrophies/pathology , NFI Transcription Factors/deficiency , NFI Transcription Factors/genetics , NFI Transcription Factors/metabolism
5.
J Neuromuscul Dis ; 9(1): 1-23, 2022.
Article in English | MEDLINE | ID: mdl-34542080

ABSTRACT

While skeletal muscle remodeling happens throughout life, diseases that result in its dysfunction are accountable for many deaths. Indeed, skeletal muscle is exceptionally capable to respond to stimuli modifying its homeostasis, such as in atrophy, hypertrophy, regeneration and repair. In particular conditions such as genetic diseases (muscular dystrophies), skeletal muscle's capacity to remodel is strongly affected and undergoes continuous cycles of chronic damage. This induces scarring, fatty infiltration, as well as loss of contractibility and of the ability to generate force. In this context, inflammation, primarily mediated by macrophages, plays a central pathogenic role. Macrophages contribute as the primary regulators of inflammation during skeletal muscle regeneration, affecting tissue-resident cells such as myogenic cells and endothelial cells, but also fibro-adipogenic progenitors, which are the main source of the fibro fatty scar. During skeletal muscle regeneration their function is tightly orchestrated, while in dystrophies their fate is strongly disturbed, resulting in chronic inflammation. In this review, we will discuss the latest findings on the role of macrophages in skeletal muscle diseases, and how they are regulated.


Subject(s)
Inflammation/immunology , Macrophages/physiology , Muscular Dystrophies/immunology , Humans
6.
Exp Cell Res ; 410(2): 112968, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34883113

ABSTRACT

Muscular dystrophies (MDs) are heterogeneous diseases, characterized by primary wasting of skeletal muscle, which in severe cases, such as Duchenne Muscular Dystrophy (DMD), leads to wheelchair dependency, respiratory failure, and premature death. Research is ongoing to develop efficacious therapies, particularly for DMD. Most of the efforts, currently focusing on correcting or restoring the primary defect of MDs, are based on gene-addition, exon-skipping, stop codon read-through, and genome-editing. Although promising, most of them revealed several practical limitations. Shared knowledge in the field is that, in order to be really successful, any therapeutic approach has to rely on spared functional muscle tissue, restricting the number of patients eligible for clinical trials to the youngest and less compromised individuals. In line with this, many therapeutic strategies aim to preserve muscle tissue and function. This Review outlines the most interesting and recent studies addressing the secondary outcomes of DMD and how to better deliver the therapeutic agents. In the future, the effective treatment of DMD will likely require combinations of therapies addressing both the primary genetic defect and its consequences.


Subject(s)
Muscle, Skeletal/pathology , Muscular Dystrophy, Duchenne/therapy , Calcium/metabolism , Energy Metabolism , Humans , Inflammation/pathology , Sodium/metabolism
7.
Front Genet ; 13: 1056114, 2022.
Article in English | MEDLINE | ID: mdl-36685855

ABSTRACT

In 2002 we published an article describing a population of vessel-associated progenitors that we termed mesoangioblasts (MABs). During the past decade evidence had accumulated that during muscle development and regeneration things may be more complex than a simple sequence of binary choices (e.g., dorsal vs. ventral somite). LacZ expressing fibroblasts could fuse with unlabelled myoblasts but not among themselves or with other cell types. Bone marrow derived, circulating progenitors were able to participate in muscle regeneration, though in very small percentage. Searching for the embryonic origin of these progenitors, we identified them as originating at least in part from the embryonic aorta and, at later stages, from the microvasculature of skeletal muscle. While continuing to investigate origin and fate of MABs, the fact that they could be expanded in vitro (also from human muscle) and cross the vessel wall, suggested a protocol for the cell therapy of muscular dystrophies. We tested this protocol in mice and dogs before proceeding to the first clinical trial on Duchenne Muscular Dystrophy patients that showed safety but minimal efficacy. In the last years, we have worked to overcome the problem of low engraftment and tried to understand their role as auxiliary myogenic progenitors during development and regeneration.

8.
Nat Commun ; 12(1): 6013, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34650038

ABSTRACT

The transcription factor NF-Y promotes cell proliferation and its activity often declines during differentiation through the regulation of NF-YA, the DNA binding subunit of the complex. In stem cell compartments, the shorter NF-YA splice variant is abundantly expressed and sustains their expansion. Here, we report that satellite cells, the stem cell population of adult skeletal muscle necessary for its growth and regeneration, express uniquely the longer NF-YA isoform, majorly associated with cell differentiation. Through the generation of a conditional knock out mouse model that selectively deletes the NF-YA gene in satellite cells, we demonstrate that NF-YA expression is fundamental to preserve the pool of muscle stem cells and ensures robust regenerative response to muscle injury. In vivo and ex vivo, satellite cells that survive to NF-YA loss exit the quiescence and are rapidly committed to early differentiation, despite delayed in the progression towards later states. In vitro results demonstrate that NF-YA-depleted muscle stem cells accumulate DNA damage and cannot properly differentiate. These data highlight a new scenario in stem cell biology for NF-Y activity, which is required for efficient myogenic differentiation.


Subject(s)
CCAAT-Binding Factor/metabolism , Muscle, Skeletal/metabolism , Regeneration/physiology , Stem Cells/metabolism , Transcription Factors/metabolism , Animals , CCAAT-Binding Factor/genetics , Cell Differentiation/genetics , Cell Proliferation , Gene Expression Regulation , Male , Mice , Mice, Knockout , Muscle Development/genetics , Muscle Development/physiology , Protein Isoforms/genetics , Regeneration/genetics
9.
Talanta ; 235: 122742, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34517610

ABSTRACT

Due to the physiological properties of l-carnosine (l-1), supplementation of this dipeptide has both a nutritional ergogenic application and a therapeutic potential for the treatment of numerous diseases in which ischemic or oxidative stress are involved. Quantitation of carnosine and its analogs in biological matrices results to be crucial for these applications and HPLC-MS procedures with isotope-labeled internal standards are the state-of-the-art approach for this analytical need. The use of these standards allows to account for variations during the sample preparation process, between-sample matrix effects, and variations in instrument performance over analysis time. Although literature reports a number of studies involving carnosine, isotope-labeled derivatives of the dipeptide are not commercially available. In this work we present a fast, flexible, and convenient strategy for the synthesis of the 13C-labeled carnosine analogs and their application as internal standards for the quantitation of carnosine and anserine in a biological matrix.


Subject(s)
Carnosine , Anserine , Chromatography, High Pressure Liquid , Dipeptides , Mass Spectrometry
10.
Sci Transl Med ; 13(596)2021 06 02.
Article in English | MEDLINE | ID: mdl-34078746

ABSTRACT

Muscular dystrophies (MDs) are a group of genetic diseases characterized by progressive muscle wasting associated to oxidative stress and persistent inflammation. It is essential to deepen our knowledge on the mechanism connecting these two processes because current treatments for MDs have limited efficacy and/or are associated with side effects. Here, we identified the alarmin high-mobility group box 1 (HMGB1) as a functional link between oxidative stress and inflammation in MDs. The oxidation of HMGB1 cysteines switches its extracellular activities from the orchestration of tissue regeneration to the exacerbation of inflammation. Extracellular HMGB1 is present at high amount and undergoes oxidation in patients with MDs and in mouse models of Duchenne muscular dystrophy (DMD) and limb-girdle muscular dystrophy 3 (LGMDR3) compared to controls. Genetic ablation of HMGB1 in muscles of DMD mice leads to an amelioration of the dystrophic phenotype as evidenced by the reduced inflammation and muscle degeneration, indicating that HMGB1 oxidation is a detrimental process in MDs. Pharmacological treatment with an engineered nonoxidizable variant of HMGB1, called 3S, improves functional performance, muscle regeneration, and satellite cell engraftment in dystrophic mice while reducing inflammation and fibrosis. Overall, our data demonstrate that the balance between HMGB1 redox isoforms dictates whether skeletal muscle is in an inflamed or regenerating state, and that the nonoxidizable form of HMGB1 is a possible therapeutic approach to counteract the progression of the dystrophic phenotype. Rebalancing the HMGB1 redox isoforms may also be a therapeutic strategy for other disorders characterized by chronic oxidative stress and inflammation.


Subject(s)
HMGB1 Protein , Muscular Dystrophy, Duchenne , Animals , HMGB1 Protein/metabolism , Humans , Mice , Mice, Inbred mdx , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Oxidation-Reduction , Protein Isoforms/metabolism
11.
Cells ; 9(3)2020 03 24.
Article in English | MEDLINE | ID: mdl-32214056

ABSTRACT

NF-YA, the regulatory subunit of the trimeric transcription factor (TF) NF-Y, is regulated by alternative splicing (AS) generating two major isoforms, "long" (NF-YAl) and "short" (NF-YAs). Muscle cells express NF-YAl. We ablated exon 3 in mouse C2C12 cells by a four-guide CRISPR/Cas9n strategy, obtaining clones expressing exclusively NF-YAs (C2-YAl-KO). C2-YAl-KO cells grow normally, but are unable to differentiate. Myogenin and-to a lesser extent, MyoD- levels are substantially lower in C2-YAl-KO, before and after differentiation. Expression of the fusogenic Myomaker and Myomixer genes, crucial for the early phases of the process, is not induced. Myomaker and Myomixer promoters are bound by MyoD and Myogenin, and Myogenin overexpression induces their expression in C2-YAl-KO. NF-Y inactivation reduces MyoD and Myogenin, but not directly: the Myogenin promoter is CCAAT-less, and the canonical CCAAT of the MyoD promoter is not bound by NF-Y in vivo. We propose that NF-YAl, but not NF-YAs, maintains muscle commitment by indirectly regulating Myogenin and MyoD expression in C2C12 cells. These experiments are the first genetic evidence that the two NF-YA isoforms have functionally distinct roles.


Subject(s)
CCAAT-Binding Factor/metabolism , Muscle Fibers, Skeletal/metabolism , Animals , Base Sequence , CRISPR-Cas Systems/genetics , Cell Differentiation , Cell Fusion , Cell Line , Clone Cells , Exons/genetics , Gene Expression Regulation , Mice , Muscle Fibers, Skeletal/cytology , MyoD Protein/metabolism , Myogenin/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Transcription Factors/metabolism
12.
Cells ; 9(3)2020 03 13.
Article in English | MEDLINE | ID: mdl-32183151

ABSTRACT

Macrophages (MPs) are immune cells which are crucial for tissue repair. In skeletal muscle regeneration, pro-inflammatory cells first infiltrate to promote myogenic cell proliferation, then they switch into an anti-inflammatory phenotype to sustain myogenic cells differentiation and myofiber formation. This phenotypical switch is induced by dead cell phagocytosis. We previously demonstrated that the transcription factor Nfix, a member of the nuclear factor I (Nfi) family, plays a pivotal role during muscle development, regeneration and in the progression of muscular dystrophies. Here, we show that Nfix is mainly expressed by anti-inflammatory macrophages. Upon acute injury, mice deleted for Nfix in myeloid line displayed a significant defect in the process of muscle regeneration. Indeed, Nfix is involved in the macrophage phenotypical switch and macrophages lacking Nfix failed to adopt an anti-inflammatory phenotype and interact with myogenic cells. Moreover, we demonstrated that phagocytosis induced by the inhibition of the RhoA-ROCK1 pathway leads to Nfix expression and, consequently, to acquisition of the anti-inflammatory phenotype. Our study identified Nfix as a link between RhoA-ROCK1-dependent phagocytosis and the MP phenotypical switch, thus establishing a new role for Nfix in macrophage biology for the resolution of inflammation and tissue repair.


Subject(s)
Macrophages/physiology , Muscle, Skeletal/physiology , NFI Transcription Factors/metabolism , Phagocytosis/physiology , Regeneration , rho-Associated Kinases/metabolism , rhoA GTP-Binding Protein/metabolism , Animals , Cell Differentiation , Cell Proliferation , Inflammation , Macrophages/metabolism , Mice , Mice, Knockout , Muscle, Skeletal/metabolism , Myoblasts, Skeletal/cytology , NFI Transcription Factors/genetics
13.
Cell Death Dis ; 11(2): 127, 2020 02 18.
Article in English | MEDLINE | ID: mdl-32071288

ABSTRACT

Muscular Dystrophies are severe genetic diseases due to mutations in structural genes, characterized by progressive muscle wasting that compromises patients' mobility and respiratory functions. Literature underlined oxidative stress and inflammation as key drivers of these pathologies. Interestingly among different myofiber classes, type I fibers display a milder dystrophic phenotype showing increased oxidative metabolism. This work shows the benefits of a cyanidin-enriched diet, that promotes muscle fiber-type switch and reduced inflammation in dystrophic alpha-sarcoglyan (Sgca) null mice having, as a net outcome, morphological and functional rescue. Notably, this benefit is achieved also when the diet is administered in dystrophic animals when the signs of the disease are seriously evident. Our work provides compelling evidence that a cyanidin-rich diet strongly delays the progression of muscular dystrophies, paving the way for a combinatorial approach where nutritional-based reduction of muscle inflammation and oxidative stress facilitate the successful perspectives of definitive treatments.


Subject(s)
Anthocyanins/administration & dosage , Dietary Supplements , Inflammation Mediators/metabolism , Mitochondria, Muscle/metabolism , Muscle, Skeletal/metabolism , Oxidative Stress , Sarcoglycanopathies/diet therapy , Animals , Disease Models, Animal , Disease Progression , Female , Male , Mice, Knockout , Mitochondria, Muscle/pathology , Muscle, Skeletal/pathology , Organelle Biogenesis , Phenotype , Protein Carbonylation , Sarcoglycanopathies/genetics , Sarcoglycanopathies/metabolism , Sarcoglycanopathies/pathology , Sarcoglycans/deficiency , Sarcoglycans/genetics
14.
Am J Pathol ; 189(2): 354-369, 2019 02.
Article in English | MEDLINE | ID: mdl-30448410

ABSTRACT

In muscular dystrophies, muscle membrane fragility results in a tissue-specific increase of danger-associated molecular pattern molecules (DAMPs) and infiltration of inflammatory cells. The DAMP extracellular ATP (eATP) released by dying myofibers steadily activates muscle and immune purinergic receptors exerting dual negative effects: a direct damage linked to altered intracellular calcium homeostasis in muscle cells and an indirect toxicity through the triggering of the immune response and inhibition of regulatory T cells. Accordingly, pharmacologic and genetic inhibition of eATP signaling improves the phenotype in models of chronic inflammatory diseases. In α-sarcoglycanopathy, eATP effects may be further amplified because α-sarcoglycan extracellular domain binds eATP and displays an ecto-ATPase activity, thus controlling eATP concentration at the cell surface and attenuating the magnitude and/or the duration of eATP-induced signals. Herein, we show that in vivo blockade of the eATP/P2X purinergic pathway by a broad-spectrum P2X receptor-antagonist delayed the progression of the dystrophic phenotype in α-sarcoglycan-null mice. eATP blockade dampened the muscular inflammatory response and enhanced the recruitment of forkhead box protein P3-positive immunosuppressive regulatory CD4+ T cells. The improvement of the inflammatory features was associated with increased strength, reduced necrosis, and limited expression of profibrotic factors, suggesting that pharmacologic purinergic antagonism, altering the innate and adaptive immune component in muscle infiltrates, might provide a therapeutic approach to slow disease progression in α-sarcoglycanopathy.


Subject(s)
Adenosine Triphosphate/immunology , Muscular Dystrophy, Animal , Myofibrils , Sarcoglycans/deficiency , T-Lymphocytes, Regulatory , Adenosine Triphosphate/genetics , Animals , Calcium/immunology , Chronic Disease , Inflammation/genetics , Inflammation/immunology , Inflammation/pathology , Mice , Mice, Knockout , Muscular Dystrophy, Animal/genetics , Muscular Dystrophy, Animal/immunology , Muscular Dystrophy, Animal/pathology , Myofibrils/immunology , Myofibrils/pathology , Receptors, Purinergic P2X/genetics , Receptors, Purinergic P2X/immunology , Sarcoglycans/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/pathology
15.
Biochim Biophys Acta Mol Cell Res ; 1866(3): 430-440, 2019 03.
Article in English | MEDLINE | ID: mdl-30296497

ABSTRACT

Cell Penetrating Peptides -CPPs- are short aminoacidic stretches present in proteins that have the ability to translocate the plasma membrane and facilitate delivery of various molecules. They are usually rich in basic residues, and organized as alpha helices. NF-Y is a transcription factor heterotrimer formed by two Histone Fold Domain -HFD- subunits and the sequence-specific NF-YA. NF-YA possesses two α-helices rich in basic residues. We show that it efficiently enters cells at nanomolar concentrations in the absence of carrier peptides. Mutagenesis identified at least two separate CPPs in the A1 and A2, which overlap with previously identified nuclear localization signals (NLS). The half-life of the transduced protein is short in human cancer cells, longer in mouse C2C12 myoblasts. The internalized NF-YA is capable of trimerization with the HFD subunits and binding to the target CCAAT box. Functionality is further suggested by protein transfection in C2C12 cells, leading to inhibition of differentiation to myotubes. In conclusion, NF-YA contains CPPs, hinting at novel -and unexpected- properties of this subunit.


Subject(s)
CCAAT-Binding Factor/metabolism , Cell-Penetrating Peptides/metabolism , Amino Acid Sequence , Animals , CCAAT-Binding Factor/genetics , Cell Line , Cell Line, Tumor , DNA-Binding Proteins/metabolism , HCT116 Cells , HeLa Cells , Humans , Mice , Myoblasts/metabolism , Nuclear Localization Signals/metabolism , Promoter Regions, Genetic , Protein Binding , Transfection
16.
Trends Cell Biol ; 29(1): 20-30, 2019 01.
Article in English | MEDLINE | ID: mdl-30287093

ABSTRACT

The past decade has seen incredible advances in the field of stem cell biology that have greatly improved our understanding of development and provided important insights into pathological processes. Transcription factors (TFs) play a central role in mediating stem cell proliferation, quiescence, and differentiation. One TF that contributes to these processes is Nuclear Factor One X (NFIX). Recently, NFIX activity has been shown to be essential in multiple organ systems and to have important translational impacts for human health. Here, we describe recent studies showing the contribution of NFIX to muscle development and muscular dystrophies, hematopoiesis, cancer, and neural stem cell biology, highlighting the importance of this knowledge in the development of therapeutic targets.


Subject(s)
Hematopoiesis , Muscle Development , Muscular Dystrophies/metabolism , NFI Transcription Factors/metabolism , Neoplasms/metabolism , Animals , Humans , Muscular Dystrophies/pathology , Neoplasms/pathology , Neural Stem Cells/metabolism , Neural Stem Cells/pathology
17.
Development ; 145(21)2018 10 29.
Article in English | MEDLINE | ID: mdl-30266829

ABSTRACT

The transcription factor Nfix belongs to the nuclear factor one family and has an essential role in prenatal skeletal muscle development, where it is a master regulator of the transition from embryonic to foetal myogenesis. Recently, Nfix was shown to be involved in adult muscle regeneration and in muscular dystrophies. Here, we have investigated the signalling that regulates Nfix expression, and show that JunB, a member of the AP-1 family, is an activator of Nfix, which then leads to foetal myogenesis. Moreover, we demonstrate that their expression is regulated through the RhoA/ROCK axis, which maintains embryonic myogenesis. Specifically, RhoA and ROCK repress ERK kinase activity, which promotes JunB and Nfix expression. Notably, the role of ERK in the activation of Nfix is conserved postnatally in satellite cells, which represent the canonical myogenic stem cells of adult muscle. As lack of Nfix in muscular dystrophies rescues the dystrophic phenotype, the identification of this pathway provides an opportunity to pharmacologically target Nfix in muscular dystrophies.


Subject(s)
MAP Kinase Signaling System , Muscle Development , Myoblasts/metabolism , NFI Transcription Factors/metabolism , rhoA GTP-Binding Protein/metabolism , Animals , Animals, Newborn , Embryo, Mammalian/metabolism , Female , Fetus/metabolism , Gene Expression Regulation, Developmental , Gene Silencing , Male , Mice , NFI Transcription Factors/genetics , Stem Cells/metabolism , Transcription Factors/metabolism , rho-Associated Kinases/metabolism
18.
Front Physiol ; 9: 352, 2018.
Article in English | MEDLINE | ID: mdl-29674978

ABSTRACT

The formation and activity of mammalian tissues entail finely regulated processes, involving the concerted organization and interaction of multiple cell types. In recent years the prospective isolation of distinct progenitor and stem cell populations has become a powerful tool in the hands of developmental biologists and has rendered the investigation of their intrinsic properties possible. In this protocol, we describe how to purify progenitors with different lineage history and degree of differentiation from embryonic and fetal skeletal muscle by fluorescence-activated cell sorting (FACS). The approach takes advantage of a panel of murine strains expressing fluorescent reporter genes specifically in the myogenic progenitors. We provide a detailed description of the dissection procedures and of the enzymatic dissociation required to maximize the yield of mononucleated cells for subsequent FACS-based purification. The procedure takes ~6-7 h to complete and allows for the isolation and the subsequent molecular and phenotypic characterization of developmental myogenic progenitors.

19.
Mol Ther ; 26(4): 1093-1108, 2018 04 04.
Article in English | MEDLINE | ID: mdl-29503200

ABSTRACT

Duchenne muscular dystrophy (DMD) is a lethal muscle-wasting disease currently without cure. We investigated the use of the PiggyBac transposon for full-length dystrophin expression in murine mesoangioblast (MABs) progenitor cells. DMD murine MABs were transfected with transposable expression vectors for full-length dystrophin and transplanted intramuscularly or intra-arterially into mdx/SCID mice. Intra-arterial delivery indicated that the MABs could migrate to regenerating muscles to mediate dystrophin expression. Intramuscular transplantation yielded dystrophin expression in 11%-44% of myofibers in murine muscles, which remained stable for the assessed period of 5 months. The satellite cells isolated from transplanted muscles comprised a fraction of MAB-derived cells, indicating that the transfected MABs may colonize the satellite stem cell niche. Transposon integration site mapping by whole-genome sequencing indicated that 70% of the integrations were intergenic, while none was observed in an exon. Muscle resistance assessment by atomic force microscopy indicated that 80% of fibers showed elasticity properties restored to those of wild-type muscles. As measured in vivo, transplanted muscles became more resistant to fatigue. This study thus provides a proof-of-principle that PiggyBac transposon vectors may mediate full-length dystrophin expression as well as functional amelioration of the dystrophic muscles within a potential autologous cell-based therapeutic approach of DMD.


Subject(s)
Cell- and Tissue-Based Therapy , DNA Transposable Elements , Gene Transfer Techniques , Genetic Vectors/genetics , Muscular Dystrophy, Duchenne/genetics , Myoblasts/metabolism , Myoblasts/transplantation , Animals , Cell Line , Cell- and Tissue-Based Therapy/methods , Disease Models, Animal , Dystrophin/genetics , Fluorescent Antibody Technique , Gene Dosage , Gene Expression , Gene Order , Genes, Reporter , Male , Mice , Mice, Inbred mdx , Mice, SCID , Muscular Dystrophy, Duchenne/pathology , Muscular Dystrophy, Duchenne/physiopathology , Muscular Dystrophy, Duchenne/therapy , Phenotype , Transgenes , Transplantation, Autologous
20.
EMBO Mol Med ; 10(2): 254-275, 2018 02.
Article in English | MEDLINE | ID: mdl-29242210

ABSTRACT

Transferring large or multiple genes into primary human stem/progenitor cells is challenged by restrictions in vector capacity, and this hurdle limits the success of gene therapy. A paradigm is Duchenne muscular dystrophy (DMD), an incurable disorder caused by mutations in the largest human gene: dystrophin. The combination of large-capacity vectors, such as human artificial chromosomes (HACs), with stem/progenitor cells may overcome this limitation. We previously reported amelioration of the dystrophic phenotype in mice transplanted with murine muscle progenitors containing a HAC with the entire dystrophin locus (DYS-HAC). However, translation of this strategy to human muscle progenitors requires extension of their proliferative potential to withstand clonal cell expansion after HAC transfer. Here, we show that reversible cell immortalisation mediated by lentivirally delivered excisable hTERT and Bmi1 transgenes extended cell proliferation, enabling transfer of a novel DYS-HAC into DMD satellite cell-derived myoblasts and perivascular cell-derived mesoangioblasts. Genetically corrected cells maintained a stable karyotype, did not undergo tumorigenic transformation and retained their migration ability. Cells remained myogenic in vitro (spontaneously or upon MyoD induction) and engrafted murine skeletal muscle upon transplantation. Finally, we combined the aforementioned functions into a next-generation HAC capable of delivering reversible immortalisation, complete genetic correction, additional dystrophin expression, inducible differentiation and controllable cell death. This work establishes a novel platform for complex gene transfer into clinically relevant human muscle progenitors for DMD gene therapy.


Subject(s)
Chromosomes, Artificial, Human , Dystrophin/genetics , Genetic Therapy/methods , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/therapy , Animals , Cells, Cultured , Genetic Vectors , Humans , Mice , Models, Animal , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...