Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
3.
Am J Hum Genet ; 111(1): 96-118, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38181735

ABSTRACT

PPFIA3 encodes the protein-tyrosine phosphatase, receptor-type, F-polypeptide-interacting-protein-alpha-3 (PPFIA3), which is a member of the LAR-protein-tyrosine phosphatase-interacting-protein (liprin) family involved in synapse formation and function, synaptic vesicle transport, and presynaptic active zone assembly. The protein structure and function are evolutionarily well conserved, but human diseases related to PPFIA3 dysfunction are not yet reported in OMIM. Here, we report 20 individuals with rare PPFIA3 variants (19 heterozygous and 1 compound heterozygous) presenting with developmental delay, intellectual disability, hypotonia, dysmorphisms, microcephaly or macrocephaly, autistic features, and epilepsy with reduced penetrance. Seventeen unique PPFIA3 variants were detected in 18 families. To determine the pathogenicity of PPFIA3 variants in vivo, we generated transgenic fruit flies producing either human wild-type (WT) PPFIA3 or five missense variants using GAL4-UAS targeted gene expression systems. In the fly overexpression assays, we found that the PPFIA3 variants in the region encoding the N-terminal coiled-coil domain exhibited stronger phenotypes compared to those affecting the C-terminal region. In the loss-of-function fly assay, we show that the homozygous loss of fly Liprin-α leads to embryonic lethality. This lethality is partially rescued by the expression of human PPFIA3 WT, suggesting human PPFIA3 function is partially conserved in the fly. However, two of the tested variants failed to rescue the lethality at the larval stage and one variant failed to rescue lethality at the adult stage. Altogether, the human and fruit fly data reveal that the rare PPFIA3 variants are dominant-negative loss-of-function alleles that perturb multiple developmental processes and synapse formation.


Subject(s)
Drosophila Proteins , Intellectual Disability , Neurodevelopmental Disorders , Adult , Animals , Humans , Alleles , Animals, Genetically Modified , Drosophila , Drosophila Proteins/genetics , Intellectual Disability/genetics , Intracellular Signaling Peptides and Proteins , Neurodevelopmental Disorders/genetics , Protein Tyrosine Phosphatases
4.
Hum Mol Genet ; 33(8): 724-732, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38271184

ABSTRACT

Since first publication of the American College of Medical Genetics and Genomics/Association for Medical Pathology (ACMG/AMP) variant classification guidelines, additional recommendations for application of certain criteria have been released (https://clinicalgenome.org/docs/), to improve their application in the diagnostic setting. However, none have addressed use of the PS4 and PP4 criteria, capturing patient presentation as evidence towards pathogenicity. Application of PS4 can be done through traditional case-control studies, or "proband counting" within or across clinical testing cohorts. Review of the existing PS4 and PP4 specifications for Hereditary Cancer Gene Variant Curation Expert Panels revealed substantial differences in the approach to defining specifications. Using BRCA1, BRCA2 and TP53 as exemplar genes, we calibrated different methods proposed for applying the "PS4 proband counting" criterion. For each approach, we considered limitations, non-independence with other ACMG/AMP criteria, broader applicability, and variability in results for different datasets. Our findings highlight inherent overlap of proband-counting methods with ACMG/AMP frequency codes, and the importance of calibration to derive dataset-specific code weights that can account for potential between-dataset differences in ascertainment and other factors. Our work emphasizes the advantages and generalizability of logistic regression analysis over simple proband-counting approaches to empirically determine the relative predictive capacity and weight of various personal clinical features in the context of multigene panel testing, for improved variant interpretation. We also provide a general protocol, including instructions for data formatting and a web-server for analysis of personal history parameters, to facilitate dataset-specific calibration analyses required to use such data for germline variant classification.


Subject(s)
Genetic Variation , Neoplasms , Humans , Genetic Variation/genetics , Genetic Testing/methods , Genome, Human , Phenotype , Genes, Neoplasm , Neoplasms/genetics
5.
Hum Mutat ; 20232023.
Article in English | MEDLINE | ID: mdl-38084291

ABSTRACT

Germline pathogenic variants in DICER1 predispose individuals to develop a variety of benign and malignant tumors. Accurate variant curation and classification is essential for reliable diagnosis of DICER1-related tumor predisposition and identification of individuals who may benefit from surveillance. Since 2015, most labs have followed the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP) sequence variant classification guidelines for DICER1 germline variant curation. However, these general guidelines lack gene-specific nuances and leave room for subjectivity. Consequently, a group of DICER1 experts joined ClinGen to form the DICER1 and miRNA-Processing Genes Variant Curation Expert Panel (VCEP), to create DICER1- specific ACMG/AMP guidelines for germline variant curation. The VCEP followed the FDA-approved ClinGen protocol for adapting and piloting these guidelines. A diverse set of 40 DICER1 variants were selected for piloting, including 14 known Pathogenic/Likely Pathogenic (P/LP) variants, 12 known Benign/Likely Benign (B/LB) variants, and 14 variants classified as variants of uncertain significance (VUS) or with conflicting interpretations in ClinVar. Clinically meaningful classifications (i.e., P, LP, LB, or B) were achieved for 82.5% (33/40) of the pilot variants, with 100% concordance among the known P/LP and known B/LB variants. Half of the VUS or conflicting variants were resolved with four variants classified as LB and three as LP. These results demonstrate that the DICER1-specific guidelines for germline variant curation effectively classify known pathogenic and benign variants while reducing the frequency of uncertain classifications. Individuals and labs curating DICER1 variants should consider adopting this classification framework to encourage consistency and improve objectivity.


Subject(s)
Genetic Testing , Neoplasms , Humans , Genetic Testing/methods , Genetic Variation , Genome, Human , Genomics/methods , Neoplasms/genetics , Germ Cells , Ribonuclease III/genetics , DEAD-box RNA Helicases/genetics
6.
medRxiv ; 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37034625

ABSTRACT

PPFIA3 encodes the Protein-Tyrosine Phosphatase, Receptor-Type, F Polypeptide-Interacting Protein Alpha-3 (PPFIA3), which is a member of the LAR protein-tyrosine phosphatase-interacting protein (liprin) family involved in synaptic vesicle transport and presynaptic active zone assembly. The protein structure and function are well conserved in both invertebrates and vertebrates, but human diseases related to PPFIA3 dysfunction are not yet known. Here, we report 14 individuals with rare mono-allelic PPFIA3 variants presenting with features including developmental delay, intellectual disability, hypotonia, autism, and epilepsy. To determine the pathogenicity of PPFIA3 variants in vivo , we generated transgenic fruit flies expressing either human PPFIA3 wildtype (WT) or variant protein using GAL4-UAS targeted gene expression systems. Ubiquitous expression with Actin-GAL4 showed that the PPFIA3 variants had variable penetrance of pupal lethality, eclosion defects, and anatomical leg defects. Neuronal expression with elav-GAL4 showed that the PPFIA3 variants had seizure-like behaviors, motor defects, and bouton loss at the 3 rd instar larval neuromuscular junction (NMJ). Altogether, in the fly overexpression assays, we found that the PPFIA3 variants in the N-terminal coiled coil domain exhibited stronger phenotypes compared to those in the C-terminal region. In the loss-of-function fly assay, we show that the homozygous loss of fly Liprin- α leads to embryonic lethality. This lethality is partially rescued by the expression of human PPFIA3 WT, suggesting human PPFIA3 protein function is partially conserved in the fly. However, the PPFIA3 variants failed to rescue lethality. Altogether, the human and fruit fly data reveal that the rare PPFIA3 variants are dominant negative loss-of-function alleles that perturb multiple developmental processes and synapse formation.

7.
Cancer Genet ; 266-267: 86-89, 2022 08.
Article in English | MEDLINE | ID: mdl-35926323

ABSTRACT

Mosaic variants are regularly detected on hereditary cancer genetic tests. While some of these variants may be constitutional, the majority are likely limited to blood lineages. In the present study, we correlate clinical histories from individuals with mosaic findings identified on hereditary cancer testing and the outcomes of follow-up fibroblast (FB) testing. We observed 620 mosaic variants, including 339 pathogenic or likely pathogenic variants (PVs) occurring most often in TP53, CHEK2, ATM, and NF1. About half of individuals with NF1 mosaic PVs did not report any clinical features of NF1 and were older at testing (p<0.0001) compared to those with an NF1-related phenotype. Among 42 mosaic PVs evaluated by FB testing, 17 (40.5%) were confirmed in FB and were mostly identified in individuals with phenotypes consistent with the gene disease spectrum. Our data show that FB testing is helpful for identifying those with likely constitutional mosaicism benefitting from increased screening and follow-up vs. those with blood-limited variants potentially not requiring intense surveillance but warranting further hematologic work-up.


Subject(s)
Breast Neoplasms , Neoplasms , Breast Neoplasms/genetics , Female , Fibroblasts , Genetic Predisposition to Disease , Genetic Testing , Humans , Neoplasms/genetics , Phenotype
8.
Genome Med ; 14(1): 6, 2022 01 18.
Article in English | MEDLINE | ID: mdl-35039090

ABSTRACT

BACKGROUND: Identification of clinically significant genetic alterations involved in human disease has been dramatically accelerated by developments in next-generation sequencing technologies. However, the infrastructure and accessible comprehensive curation tools necessary for analyzing an individual patient genome and interpreting genetic variants to inform healthcare management have been lacking. RESULTS: Here we present the ClinGen Variant Curation Interface (VCI), a global open-source variant classification platform for supporting the application of evidence criteria and classification of variants based on the ACMG/AMP variant classification guidelines. The VCI is among a suite of tools developed by the NIH-funded Clinical Genome Resource (ClinGen) Consortium and supports an FDA-recognized human variant curation process. Essential to this is the ability to enable collaboration and peer review across ClinGen Expert Panels supporting users in comprehensively identifying, annotating, and sharing relevant evidence while making variant pathogenicity assertions. To facilitate evidence-based improvements in human variant classification, the VCI is publicly available to the genomics community. Navigation workflows support users providing guidance to comprehensively apply the ACMG/AMP evidence criteria and document provenance for asserting variant classifications. CONCLUSIONS: The VCI offers a central platform for clinical variant classification that fills a gap in the learning healthcare system, facilitates widespread adoption of standards for clinical curation, and is available at https://curation.clinicalgenome.org.


Subject(s)
Genetic Variation , Genome, Human , Humans , Genetic Testing , Genomics
9.
J Mol Diagn ; 22(3): 396-404, 2020 03.
Article in English | MEDLINE | ID: mdl-31881331

ABSTRACT

Heterozygous (HET) TP53 pathogenic variants (PVs) are associated with Li-Fraumeni syndrome (LFS), a dominantly inherited condition causing high risk for sarcoma, breast, and other cancers. Recent reports describe patients without features of LFS and apparently HET TP53 PVs in blood cells but not fibroblasts (FBs), suggesting the variant occurred sporadically during hematopoiesis and rose to high allele fraction through clonal expansion. To explore possible clonal hematopoiesis in patients undergoing hereditary cancer testing, FB testing was performed for patients with apparently HET or mosaic TP53 PVs identified in blood, oral rinse, or buccal specimens via next-generation sequencing panels. Among 291 individuals with TP53 PVs, 146 (50.2%) appeared HET and 145 (49.8%) were mosaic. Twenty-eight HET cases were proven constitutional through familial testing. FB testing was completed for 17 apparently HET and 36 mosaic patients. FB testing was positive in 11 of 17 (64.7%) apparently HET patients, only one of whom met Chompret criteria. Of 36 mosaic patients, 5 (13.9%) were also mosaic in FBs, indicating constitutional mosaicism. Breast cancers in patients with constitutional TP53 PVs were diagnosed at younger ages (P < 0.0001) and more likely to demonstrate human epidermal growth factor receptor 2 overexpression (P = 0.0003). These results demonstrate the utility of cultured FB testing to clarify constitutional status for TP53 PVs identified on next-generation sequencing panels, particularly for patients not meeting LFS or Chompret criteria.


Subject(s)
Genetic Predisposition to Disease , Genetic Testing , Genetic Variation , Heterozygote , Neoplasms/diagnosis , Neoplasms/genetics , Tumor Suppressor Protein p53/genetics , Adult , Aged , Biomarkers, Tumor , Female , Genetic Association Studies/methods , Genetic Testing/methods , High-Throughput Nucleotide Sequencing , Humans , Li-Fraumeni Syndrome/complications , Li-Fraumeni Syndrome/diagnosis , Li-Fraumeni Syndrome/genetics , Male , Middle Aged
10.
Hum Mutat ; 39(11): 1581-1592, 2018 11.
Article in English | MEDLINE | ID: mdl-30311380

ABSTRACT

The ClinGen PTEN Expert Panel was organized by the ClinGen Hereditary Cancer Clinical Domain Working Group to assemble clinicians, researchers, and molecular diagnosticians with PTEN expertise to develop specifications to the 2015 ACMG/AMP Sequence Variant Interpretation Guidelines for PTEN variant interpretation. We describe finalized PTEN-specific variant classification criteria and outcomes from pilot testing of 42 variants with benign/likely benign (BEN/LBEN), pathogenic/likely pathogenic (PATH/LPATH), uncertain significance (VUS), and conflicting (CONF) ClinVar assertions. Utilizing these rules, classifications concordant with ClinVar assertions were achieved for 14/15 (93.3%) BEN/LBEN and 16/16 (100%) PATH/LPATH ClinVar consensus variants for an overall concordance of 96.8% (30/31). The variant where agreement was not reached was a synonymous variant near a splice donor with noncanonical sequence for which in silico models cannot predict the native site. Applying these rules to six VUS and five CONF variants, adding shared internal laboratory data enabled one VUS to be classified as LBEN and two CONF variants to be as classified as PATH and LPATH. This study highlights the benefit of gene-specific criteria and the value of sharing internal laboratory data for variant interpretation. Our PTEN-specific criteria and expertly reviewed assertions should prove helpful for laboratories and others curating PTEN variants.


Subject(s)
Genome, Human/genetics , PTEN Phosphohydrolase/genetics , Databases, Genetic , Genetic Testing , Genetic Variation/genetics , High-Throughput Nucleotide Sequencing , Humans , Software
11.
Hum Mutat ; 39(11): 1614-1622, 2018 11.
Article in English | MEDLINE | ID: mdl-30311389

ABSTRACT

Genome-scale sequencing creates vast amounts of genomic data, increasing the challenge of clinical sequence variant interpretation. The demand for high-quality interpretation requires multiple specialties to join forces to accelerate the interpretation of sequence variant pathogenicity. With over 600 international members including clinicians, researchers, and laboratory diagnosticians, the Clinical Genome Resource (ClinGen), funded by the National Institutes of Health, is forming expert groups to systematically evaluate variants in clinically relevant genes. Here, we describe the first ClinGen variant curation expert panels (VCEPs), development of consistent and streamlined processes for establishing new VCEPs, and creation of standard operating procedures for VCEPs to define application of the ACMG/AMP guidelines for sequence variant interpretation in specific genes or diseases. Additionally, ClinGen has created user interfaces to enhance reliability of curation and a Sequence Variant Interpretation Working Group (SVI WG) to harmonize guideline specifications and ensure consistency between groups. The expansion of VCEPs represents the primary mechanism by which curation of a substantial fraction of genomic variants can be accelerated and ultimately undertaken systematically and comprehensively. We welcome groups to utilize our resources and become involved in our effort to create a publicly accessible, centralized resource for clinically relevant genes and variants.


Subject(s)
Genetic Variation/genetics , Genome, Human/genetics , Computational Biology , Databases, Genetic , Genomics , Humans , Mutation/genetics , Societies, Medical , Software , United States
12.
Ann Surg Oncol ; 25(12): 3556-3562, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30167906

ABSTRACT

BACKGROUND: Knowledge of a germline pathogenic/likely pathogenic variant (PV) may inform breast cancer management. BRCA1/2 PV often impact surgical decisions, but data for multi-gene panel testing are lacking. Expedited genetic testing reduces turn-around times based on request for treatment-related decision making. This report aims to describe the clinical utility of expedited multi-gene panel testing for patients with newly diagnosed breast cancer. METHODS: Clinical and demographic information were reviewed for patients with newly diagnosed female breast cancer undergoing expedited panel testing between 2013 and 2017. The National Comprehensive Cancer Network guidelines (NCCN, version 1.2018) were evaluated in terms of published management recommendations for the genes in which PVs were identified. RESULTS: The overall PV yield was 9.5% (678/7127) for women undergoing expedited panel testing, with 700 PVs identified among 678 women. PVs were identified in genes other than BRCA1/2 in 55.9% (391/700) of cases. The NCCN guidelines recommend management for the genes in which 96.6% (676/700) of PVs are identified. The NCCN guidelines also recommend risk-reducing mastectomy for 46.0% (322/700) of PVs identified. An additional 45.6% (319/700) of PVs were identified in genes for which NCCN recommends mastectomy based on family history. In addition, 49.9% (349/700) of PVs were in genes with NCCN guidelines recommending prophylactic surgery for tissues other than breast. CONCLUSION: A majority of the patients with newly diagnosed breast cancer were candidates for surgical intervention according to the NCCN guidelines, and half of these patients would have been missed if only BRCA1/2 testing had been ordered. Expedited multi-gene hereditary cancer panel testing should be considered as a first-line approach to provide comprehensive information for breast cancer management.


Subject(s)
BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Genetic Predisposition to Disease , Genetic Testing , Germ-Line Mutation , Practice Guidelines as Topic/standards , Biomarkers, Tumor/genetics , Breast Neoplasms/surgery , Disease Management , Female , Humans , Mastectomy , Middle Aged , Prognosis
14.
Cold Spring Harb Mol Case Stud ; 2(6): a001230, 2016 11.
Article in English | MEDLINE | ID: mdl-27900366

ABSTRACT

Lhermitte-Duclos disease (LDD) is a rare cerebellar disorder believed to be pathognomonic for Cowden syndrome. Presently, the only known etiology is germline PTEN mutation. We report a 41-yr-old white female diagnosed with LDD and wild-type for PTEN. Exome sequencing revealed a germline heterozygous EGFR mutation that breaks a disulfide bond in the receptor's extracellular domain, resulting in constitutive activation. Functional studies demonstrate activation of ERK/AKT signaling pathways, mimicking PTEN loss-of-function downstream effects. The identification of EGFR as a candidate LDD susceptibility gene contributes to advancement of molecular diagnosis and targeted therapy for this rare condition with limited treatment options.


Subject(s)
ErbB Receptors/genetics , Hamartoma Syndrome, Multiple/genetics , Adult , Cerebellar Neoplasms/diagnosis , Cerebellum/metabolism , ErbB Receptors/metabolism , Exome , Female , Gain of Function Mutation/genetics , Ganglioneuroma/diagnosis , Genetic Predisposition to Disease , Germ Cells/metabolism , Germ-Line Mutation/genetics , Heterozygote , Humans , Mutation , Signal Transduction
15.
Endocr Relat Cancer ; 23(3): 171-9, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26699384

ABSTRACT

Germline mutations in the PTEN gene, which cause Cowden syndrome, are known to be one of the genetic factors for primary thyroid and breast cancers; however, PTEN mutations are found in only a small subset of research participants with non-syndrome breast and thyroid cancers. In this study, we aimed to identify germline variants that may be related to genetic risk of primary thyroid and breast cancers. Genomic DNAs extracted from peripheral blood of 14 PTEN WT female research participants with primary thyroid and breast cancers were analyzed by whole-exome sequencing. Gene-based case-control association analysis using the information of 406 Europeans obtained from the 1000 Genomes Project database identified 34 genes possibly associated with the phenotype with P < 1.0 × 10(-3). Among them, rare variants in the PARP4 gene were detected at significant high frequency (odds ratio = 5.2; P = 1.0 × 10(-5)). The variants, G496V and T1170I, were found in six of the 14 study participants (43%) while their frequencies were only 0.5% in controls. Functional analysis using HCC1143 cell line showed that knockdown of PARP4 with siRNA significantly enhanced the cell proliferation, compared with the cells transfected with siControl (P = 0.02). Kaplan-Meier analysis using Gene Expression Omnibus (GEO), European Genome-phenome Archive (EGA) and The Cancer Genome Atlas (TCGA) datasets showed poor relapse-free survival (P < 0.001, Hazard ratio 1.27) and overall survival (P = 0.006, Hazard ratio 1.41) in a PARP4 low-expression group, suggesting that PARP4 may function as a tumor suppressor. In conclusion, we identified PARP4 as a possible susceptibility gene of primary thyroid and breast cancer.


Subject(s)
Breast Neoplasms/genetics , Nuclear Proteins/genetics , Thyroid Neoplasms/genetics , Adult , Cell Line, Tumor , Female , Genetic Predisposition to Disease , Germ-Line Mutation , Humans , Middle Aged , Young Adult
16.
Am J Hum Genet ; 97(5): 661-76, 2015 Nov 05.
Article in English | MEDLINE | ID: mdl-26522472

ABSTRACT

Cancer-predisposing genes associated with inherited cancer syndromes help explain mechanisms of sporadic carcinogenesis and often inform normal development. Cowden syndrome (CS) is an autosomal-dominant disorder characterized by high lifetime risks of epithelial cancers, such that ∼50% of affected individuals are wild-type for known cancer-predisposing genes. Using whole-exome and Sanger sequencing of a multi-generation CS family affected by thyroid and other cancers, we identified a pathogenic missense heterozygous SEC23B variant (c.1781T>G [p.Val594Gly]) that segregates with the phenotype. We also found germline heterozygous SEC23B variants in 3/96 (3%) unrelated mutation-negative CS probands with thyroid cancer and in The Cancer Genome Atlas (TCGA), representing apparently sporadic cancers. We note that the TCGA thyroid cancer dataset is enriched with unique germline deleterious SEC23B variants associated with a significantly younger age of onset. SEC23B encodes Sec23 homolog B (S. cerevisiae), a component of coat protein complex II (COPII), which transports proteins from the endoplasmic reticulum (ER) to the Golgi apparatus. Interestingly, germline homozygous or compound-heterozygous SEC23B mutations cause an unrelated disorder, congenital dyserythropoietic anemia type II, and SEC23B-deficient mice suffer from secretory organ degeneration due to ER-stress-associated apoptosis. By characterizing the p.Val594Gly variant in a normal thyroid cell line, we show that it is a functional alteration that results in ER-stress-mediated cell-colony formation and survival, growth, and invasion, which reflect aspects of a cancer phenotype. Our findings suggest a different role for SEC23B, whereby germline heterozygous variants associate with cancer predisposition potentially mediated by ER stress "addiction."


Subject(s)
Endoplasmic Reticulum Stress , Germ-Line Mutation/genetics , Hamartoma Syndrome, Multiple/genetics , Hamartoma Syndrome, Multiple/pathology , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Vesicular Transport Proteins/genetics , Adolescent , Adult , Aged , Animals , Apoptosis , Blotting, Western , Cell Adhesion , Cell Movement , Cell Proliferation , Cells, Cultured , Exome/genetics , Female , Fluorescent Antibody Technique , Follow-Up Studies , Genotype , Hamartoma Syndrome, Multiple/metabolism , Heterozygote , High-Throughput Nucleotide Sequencing , Humans , Immunoenzyme Techniques , Male , Mice , Mice, Knockout , Middle Aged , Pedigree , Phenotype , Prognosis , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Thyroid Neoplasms/metabolism , Vesicular Transport Proteins/metabolism , Vesicular Transport Proteins/physiology , Young Adult
17.
Eur J Hum Genet ; 23(11): 1538-43, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25669429

ABSTRACT

Germline KLLN promoter hypermethylation was recently identified as a potential genetic etiology of the cancer predisposition syndrome, Cowden syndrome (CS), when no causal PTEN gene mutation was found. We screened for KLLN promoter methylation in a large prospective series of CS patients and determined the risk of benign and malignant CS features in patients with increased methylation both with and without a PTEN mutation/variant of unknown significance. In all, 1012 CS patients meeting relaxed International Cowden Consortium criteria including 261 PTEN mutation-positive CS patients, 187 PTEN variant-positive CS patients and 564 PTEN mutation-negative CS patients, as well as 111 population controls were assessed for germline KLLN promoter methylation by MassARRAY EpiTYPER analysis. KLLN promoter methylation was analyzed both as a continuous and a dichotomous variable in the calculation of phenotypic risks by stepwise logistic regression and Kaplan-Meier/standardized incidence ratio methods, respectively. Significantly increased KLLN promoter methylation was seen in CS individuals with and without a PTEN mutation/VUS compared with controls (P<0.001). Patients with high KLLN promoter methylation have increased risks of all CS-associated malignancies compared with the general population. Interestingly, KLLN-associated risk of thyroid cancer appears to be gender and PTEN status dependent. KLLN promoter methylation associated with different benign phenotypes dependent on PTEN status. Furthermore, increasing KLLN promoter methylation is associated with a greater phenotype burden in mutation-negative CS patients. Germline promoter hypermethylation of KLLN is associated with particular malignant and benign CS features, which is dependent on the PTEN mutation status.


Subject(s)
Hamartoma Syndrome, Multiple/genetics , PTEN Phosphohydrolase/genetics , Thyroid Neoplasms/genetics , Tumor Suppressor Proteins/genetics , DNA Methylation/genetics , Epigenesis, Genetic/genetics , Female , Genetic Association Studies , Hamartoma Syndrome, Multiple/pathology , Humans , Male , Mutation , Promoter Regions, Genetic , Thyroid Neoplasms/pathology
18.
Cancer Epidemiol Biomarkers Prev ; 24(4): 708-12, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25597748

ABSTRACT

BACKGROUND: Research biobanks collect biologic samples and health information. Previous work shows that biobank participants desire general study updates, but preferences about the method or frequency of these communications have not been explored. Thus, we surveyed participants in a long-standing research biobank. METHODS: Eligible participants were drawn from a study of patients with personal/family history suggestive of Cowden syndrome, a poorly recognized inherited cancer syndrome. Participants gave blood samples and access to medical records and received individual results but had no other study interactions. The biobank had 3,618 participants at sampling. Survey eligibility included age ≥18 years, enrollment within the biobank's first 5 years, normal PTEN analysis, and contiguous U.S. address. Multivariate logistic regression analyses identified predictors of participant interest in Internet-based versus offline methods and methods allowing participant-researcher interaction versus one-way communication. Independent variables were narrowed by independent Pearson correlations by cutoff P < 0.2, with P < 0.02 considered significant. RESULTS: Surveys were returned from 840 of 1,267 (66%) eligible subjects. Most (97%) wanted study updates, with 92% wanting updates at least once a year. Participants preferred paper (66%) or emailed (62%) newsletter methods, with 95% selecting one of these. Older, less-educated, and lower-income respondents strongly preferred offline approaches (P < 0.001). Most (93%) had no concerns about receiving updates and 97% were willing to provide health updates to researchers. CONCLUSION: Most participants were comfortable receiving and providing updated information. Demographic factors predicted communication preferences. IMPACT: Researchers should make plans for ongoing communication early in study development and funders should support the necessary infrastructure for these efforts.


Subject(s)
Biological Specimen Banks , Biomedical Research , Communication , Adult , Aged , Aged, 80 and over , Biomedical Research/statistics & numerical data , Female , Genetic Testing , Humans , Male , Middle Aged , Patient Preference , Research Design , Surveys and Questionnaires , Young Adult
19.
Cancer ; 121(5): 688-96, 2015 Mar 01.
Article in English | MEDLINE | ID: mdl-25376524

ABSTRACT

BACKGROUND: Endometrial cancer has been recognized only recently as a major component of Cowden syndrome (CS). Germline alterations in phosphatase and tensin homolog (PTEN; PTEN_mut+), succinate dehydrogenase B/C/D (SDHB-D; SDHx_var+), and killin (KLLN_Me+) cause CS and Cowden syndrome-like (CSL) phenotypes. This study was aimed at identifying the prevalence and clinicopathologic predictors of germline PTEN_mut+, SDHx_var+, and KLLN_Me+ in CS/CSL patients presenting with endometrial cancer. METHODS: PTEN and SDHB-D mutation and KLLN promoter methylation analyses were performed for 371 prospectively enrolled patients (2005-2011). PTEN protein was analyzed from patient-derived lymphoblast lines. The PTEN Cleveland Clinic (CC) score is a weighted, regression-based risk calculator giving the a priori risk for PTEN_mut+. Demographic and clinicopathologic features were correlated with the specific gene. RESULTS: Germline PTEN_mut+, SDHx_var+, and KLLN_Me+ were found in 7%, 9.8%, and 10.5% of informative samples, respectively. Predictors of PTEN_mut+ included an age ≤ 50 years (odds ratio [OR] for an age < 30 years, 6.1 [P = .015]; OR for an age of 30-50 years, 4.4 [P = .001]), macrocephaly (OR, 14.4; P < .001), a higher CC score (OR for a 1-U increment, 1.35; P < .001), a PTEN protein level within the lowest quartile (OR, 5.1; P = .039), and coexisting renal cancer (OR, 5.7; P = .002). KLLN_Me+ patients were on average 8 years younger than KLLN_Me- patients (44 vs 52 years, P = .018). Predictors of KLLN_Me+ were a younger age and a higher CC score. On the other hand, no clinical predictors of SDH_var+ were found. CONCLUSIONS: Clinical predictors of PTEN and KLLN alterations, but not SDHx_var+, were identified. These predictors should alert the treating physician to potential heritable risk and the need for referral to genetic professionals. High-risk cancer surveillance and prophylactic surgery of the uterus may be considered for KLLN_Me+ patients similarly to PTEN_mut+ patients.


Subject(s)
Endometrial Neoplasms/genetics , Hamartoma Syndrome, Multiple/genetics , Mitochondrial Diseases/genetics , PTEN Phosphohydrolase/genetics , Succinate Dehydrogenase/genetics , Tumor Suppressor Proteins/genetics , Adult , Age Factors , Aged , Aged, 80 and over , Cells, Cultured , DNA Methylation , Female , Genetic Predisposition to Disease , Humans , Middle Aged , Mutation , Promoter Regions, Genetic , Prospective Studies , Young Adult
20.
J Clin Oncol ; 32(17): 1818-24, 2014 Jun 10.
Article in English | MEDLINE | ID: mdl-24778394

ABSTRACT

PURPOSE: Patients with Cowden syndrome (CS) with underlying germline PTEN mutations are at increased risk of breast, thyroid, endometrial, and renal cancers. To our knowledge, risk of subsequent cancers in these patients has not been previously explored or quantified. PATIENTS AND METHODS: We conducted a 7-year multicenter prospective study (2005 to 2012) of patients with CS or CS-like disease, all of whom underwent comprehensive PTEN mutational analysis. Second malignant neoplasms (SMNs) were ascertained by medical records and confirmed by pathology reports. Standardized incidence ratios (SIRs) for all SMNs combined and for breast, thyroid, endometrial, and renal cancers were calculated. RESULTS: Of the 2,912 adult patients included in our analysis, 2,024 had an invasive cancer history. Germline pathogenic PTEN mutations (PTEN mutation positive) were identified in 114 patients (5.6%). Of these 114 patients, 46 (40%) had an SMN. Median age of SMN diagnosis was 50 years (range, 21 to 71 years). Median interval between primary cancer and SMN was 5 years (range, <1 to 35 years). Of the 51 PTEN mutation-positive patients who presented with primary breast cancer, 11 (22%) had a subsequent new primary breast cancer and 10-year second breast cancer cumulative risk of 29% (95% CI, 15.3 to 43.7). Risk of SMNs compared with that of the general population was significantly elevated for all cancers (SIR, 7.74; 95% CI, 5.84 to 10.07), specifically for breast (SIR, 8.92; 95% CI, 5.85 to 13.07), thyroid (SIR, 5.83; 95% CI, 3.01 to 10.18), and endometrial SMNs (SIR, 14.08.07; 95% CI, 7.10 to 27.21). CONCLUSION: Patients with CS with germline PTEN mutations are at higher risk for SMNs compared with the general population. Prophylactic mastectomy should be considered on an individual basis given the significant risk of subsequent breast cancer.


Subject(s)
Germ-Line Mutation , Neoplasms, Second Primary/genetics , Neoplasms/genetics , PTEN Phosphohydrolase/genetics , Adolescent , Adult , Aged , Child , DNA Mutational Analysis , Female , Genetic Predisposition to Disease , Hamartoma Syndrome, Multiple/enzymology , Hamartoma Syndrome, Multiple/pathology , Humans , Male , Middle Aged , Neoplasms/enzymology , Neoplasms/pathology , Neoplasms, Second Primary/enzymology , Neoplasms, Second Primary/pathology , PTEN Phosphohydrolase/metabolism , Prospective Studies , Risk Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...