Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Comp Med ; 73(5): 378-382, 2023 Oct 29.
Article in English | MEDLINE | ID: mdl-38087408

ABSTRACT

Quantification of platelet activation can be important for patients suffering from prothrombotic states, bleeding diatheses, cardiovascular disease, and other diseases in which platelets play a role. The analysis of platelet activation ex vivo typically requires blood processing immediately after venipuncture; this requirement can create problematic situations for both medical and research personnel. Flow cytometry is one method used to quantify platelet activation by measuring the expression of platelet surface markers with fluorescent antibodies. PAMFix is a fixative that stabilizes platelet activation markers, including P-selectin (CD62P), in whole blood. PAMFix has already been validated for use in humans and canines for stabilization of whole blood, thus allowing flow cytometry to be performed up to 28 and 22 d, respectively, after venipuncture and reducing the need for expensive equipment and highly trained personnel at the location of venipuncture. Pigtailed macaques (Macaca nemestrina) are frequently used in infectious disease research that may require containment conditions that preclude immediate processing of samples. In this study, we tested the efficacy of PAMFix on whole blood from pigtailed macaques to determine the short- and long-term effects of PAMFix on platelet P-selectin expression as analyzed by flow cytometry.


Subject(s)
Blood Platelets , P-Selectin , Humans , Animals , Dogs , Macaca nemestrina , Flow Cytometry , Platelet Activation
2.
Sci Rep ; 13(1): 6463, 2023 04 20.
Article in English | MEDLINE | ID: mdl-37081035

ABSTRACT

Measles is a systemic disease initiated in the respiratory tract with widespread measles virus (MeV) infection of lymphoid tissue. Mortality can be substantial, but no licensed antiviral therapy is available. We evaluated both post-exposure prophylaxis and treatment with remdesivir, a broad-spectrum antiviral, using a well-characterized rhesus macaque model of measles. Animals were treated with intravenous remdesivir for 12 days beginning either 3 days after intratracheal infection (post-exposure prophylaxis, PEP) or 11 days after infection at the onset of disease (late treatment, LT). As PEP, remdesivir lowered levels of viral RNA in peripheral blood mononuclear cells, but RNA rebounded at the end of the treatment period and infectious virus was continuously recoverable. MeV RNA was cleared more rapidly from lymphoid tissue, was variably detected in the respiratory tract, and not detected in urine. PEP did not improve clinical disease nor lymphopenia and reduced the antibody response to infection. In contrast, LT had little effect on levels of viral RNA or the antibody response but also did not decrease clinical disease. Therefore, remdesivir transiently suppressed expression of viral RNA and limited dissemination when provided as PEP, but virus was not cleared and resumed replication without improvement in the clinical disease parameters evaluated.


Subject(s)
Leukocytes, Mononuclear , Measles , Animals , Macaca mulatta/genetics , Post-Exposure Prophylaxis , Measles/drug therapy , Measles/prevention & control , Measles virus/genetics , RNA, Viral
3.
Psychosom Med ; 84(8): 966-975, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36162063

ABSTRACT

OBJECTIVE: Simian immunodeficiency virus (SIV) infection of macaques recapitulates many aspects of HIV pathogenesis and is similarly affected by both genetic and environmental factors. Psychosocial stress is associated with immune system dysregulation and worse clinical outcomes in people with HIV. This study assessed the impact of single housing, as a model of psychosocial stress, on innate immune responses of pigtailed macaques ( Macaca nemestrina ) during acute SIV infection. METHODS: A retrospective analysis of acute SIV infection of 2- to si6-year-old male pigtailed macaques was performed to compare the innate immune responses of socially ( n = 41) and singly ( n = 35) housed animals. Measures included absolute monocyte count and subsets, and in a subset ( n ≤ 18) platelet counts and activation data. RESULTS: SIV infection resulted in the expected innate immune parameter changes with a modulating effect from housing condition. Monocyte number increased after infection for both groups, driven by classical monocytes (CD14 + CD16 - ), with a greater increase in socially housed animals (227%, p < .001, by day 14 compared with preinoculation time points). Platelet numbers recovered more quickly in the socially housed animals. Platelet activation (P-selectin) increased by 65% ( p = .004) and major histocompatibility complex class I surface expression by 40% ( p = .009) from preinoculation only in socially housed animals, whereas no change in these measures occurred in singly housed animals. CONCLUSIONS: Chronic psychosocial stress produced by single housing may play an immunomodulatory role in the innate immune response to acute retroviral infection. Dysregulated innate immunity could be one of the pathways by which psychosocial stress contributes to immune suppression and increased disease severity in people with HIV.


Subject(s)
HIV Infections , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Housing , Immunity, Innate , Macaca nemestrina , Male , P-Selectin/pharmacology , Retrospective Studies , Simian Acquired Immunodeficiency Syndrome/pathology , Simian Immunodeficiency Virus/genetics , Stress, Psychological
4.
Am J Pathol ; 192(2): 195-207, 2022 02.
Article in English | MEDLINE | ID: mdl-34767812

ABSTRACT

To catalyze severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) research, including development of novel interventive and preventive strategies, the progression of disease was characterized in a robust coronavirus disease 2019 (COVID-19) animal model. In this model, male and female golden Syrian hamsters were inoculated intranasally with SARS-CoV-2 USA-WA1/2020. Groups of inoculated and mock-inoculated uninfected control animals were euthanized at 2, 4, 7, 14, and 28 days after inoculation to track multiple clinical, pathology, virology, and immunology outcomes. SARS-CoV-2-inoculated animals consistently lost body weight during the first week of infection, had higher lung weights at terminal time points, and developed lung consolidation per histopathology and quantitative image analysis measurements. High levels of infectious virus and viral RNA were reliably present in the respiratory tract at days 2 and 4 after inoculation, corresponding with widespread necrosis and inflammation. At day 7, when the presence of infectious virus was rare, interstitial and alveolar macrophage infiltrates and marked reparative epithelial responses (type II hyperplasia) dominated in the lung. These lesions resolved over time, with only residual epithelial repair evident by day 28 after inoculation. The use of quantitative approaches to measure cellular and morphologic alterations in the lung provides valuable outcome measures for developing therapeutic and preventive interventions for COVID-19 using the hamster COVID-19 model.


Subject(s)
COVID-19/pathology , Animals , COVID-19/virology , Cricetinae , Disease Models, Animal , Female , Lung/pathology , Male , Mesocricetus , SARS-CoV-2
5.
ILAR J ; 60(3): 334-340, 2021 09 24.
Article in English | MEDLINE | ID: mdl-34352091

ABSTRACT

Researchers have worked with animals as models for decades to expand our knowledge of basic biological processes and to systematically study the physiology of disease. In general, the public has an expectation that work with animals has a purpose and will ultimately reap benefits. The likelihood of such an outcome is directly dependent on the quality of the science being conducted with those animals. However, not all frameworks for consideration of the ethics around animal research overtly consider scientific quality. In the following review, we explore the complex relationship between scientific quality and animal research ethics. We advocate for the development of a detailed "Harm-Yield Analysis" for the evaluation of biomedical animal research that emphasizes scientific quality along with societal benefit in the ethical justification of the research. We reflect on the lost opportunity to establish best practices in animal research early in the career of scientists by introducing in the curriculum and encouraging the use of a paradigm of the iterative consideration of the ethics of animal research alongside other aspects of experimental design.


Subject(s)
Animal Experimentation , Biomedical Research , Animals , Ethics, Research , Research Design
6.
mBio ; 12(4): e0097421, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34253053

ABSTRACT

In the coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), more severe outcomes are reported in males than in females, including hospitalizations and deaths. Animal models can provide an opportunity to mechanistically interrogate causes of sex differences in the pathogenesis of SARS-CoV-2. Adult male and female golden Syrian hamsters (8 to 10 weeks of age) were inoculated intranasally with 105 50% tissue culture infective dose (TCID50) of SARS-CoV-2/USA-WA1/2020 and euthanized at several time points during the acute (i.e., virus actively replicating) and recovery (i.e., after the infectious virus has been cleared) phases of infection. There was no mortality, but infected male hamsters experienced greater morbidity, losing a greater percentage of body mass, developed more extensive pneumonia as noted on chest computed tomography, and recovered more slowly than females. Treatment of male hamsters with estradiol did not alter pulmonary damage. Virus titers in respiratory tissues, including nasal turbinates, trachea, and lungs, and pulmonary cytokine concentrations, including interferon-ß (IFN-ß) and tumor necrosis factor-α (TNF-α), were comparable between the sexes. However, during the recovery phase of infection, females mounted 2-fold greater IgM, IgG, and IgA responses against the receptor-binding domain of the spike protein (S-RBD) in both plasma and respiratory tissues. Female hamsters also had significantly greater IgG antibodies against whole-inactivated SARS-CoV-2 and mutant S-RBDs as well as virus-neutralizing antibodies in plasma. The development of an animal model to study COVID-19 sex differences will allow for a greater mechanistic understanding of the SARS-CoV-2-associated sex differences seen in the human population. IMPORTANCE Men experience more severe outcomes from coronavirus disease 2019 (COVID-19) than women. Golden Syrian hamsters were used to explore sex differences in the pathogenesis of a human isolate of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). After inoculation, male hamsters experienced greater sickness, developed more severe lung pathology, and recovered more slowly than females. Sex differences in disease could not be reversed by estradiol treatment in males and were not explained by either virus replication kinetics or the concentrations of inflammatory cytokines in the lungs. During the recovery period, antiviral antibody responses in the respiratory tract and plasma, including to newly emerging SARS-CoV-2 variants, were greater in female than in male hamsters. Greater lung pathology during the acute phase combined with lower antiviral antibody responses during the recovery phase of infection in males than in females illustrate the utility of golden Syrian hamsters as a model to explore sex differences in the pathogenesis of SARS-CoV-2 and vaccine-induced immunity and protection.


Subject(s)
Antibodies, Viral/blood , COVID-19/immunology , Lung/pathology , SARS-CoV-2/immunology , Severity of Illness Index , Animals , Antibody Formation/immunology , Cricetinae , Disease Models, Animal , Estradiol/pharmacology , Female , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin M/blood , Interferon-beta/analysis , Lung/diagnostic imaging , Lung/virology , Male , Sex Factors , Spike Glycoprotein, Coronavirus/immunology , Tumor Necrosis Factor-alpha/analysis , Viral Load
7.
J Infect Dis ; 224(12): 2113-2121, 2021 12 15.
Article in English | MEDLINE | ID: mdl-33970274

ABSTRACT

BACKGROUND: Although social distancing is a key public health response during viral pandemics, psychosocial stressors, such as social isolation, have been implicated in adverse health outcomes in general [1] and in the context of infectious disease, such as human immunodeficiency virus (HIV) [2, 3]. A comprehensive understanding of the direct pathophysiologic effects of psychosocial stress on viral pathogenesis is needed to provide strategic and comprehensive care to patients with viral infection. METHODS: To determine the effect of psychosocial stress on HIV pathogenesis during acute viral infection without sociobehavioral confounders inherent in human cohorts, we compared commonly measured parameters of HIV progression between singly (n = 35) and socially (n = 41) housed simian immunodeficiency virus (SIV)-infected pigtailed macaques (Macaca nemestrina). RESULTS: Singly housed macaques had a higher viral load in the plasma and cerebrospinal fluid and demonstrated greater CD4 T-cell declines and more CD4 and CD8 T-cell activation compared with socially housed macaques throughout acute SIV infection. CONCLUSIONS: These data demonstrate that psychosocial stress directly impacts the pathogenesis of acute SIV infection and imply that it may act as an integral variable in the progression of HIV infection and potentially of other viral infections.


Subject(s)
HIV Infections , HIV/pathogenicity , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Stress, Psychological , Animals , CD4-Positive T-Lymphocytes/immunology , Humans , Lymphocyte Activation , Macaca nemestrina , Simian Acquired Immunodeficiency Syndrome/psychology , Viral Load
8.
bioRxiv ; 2021 Apr 04.
Article in English | MEDLINE | ID: mdl-33821269

ABSTRACT

In the ongoing coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), more severe outcomes are reported in males compared with females, including hospitalizations and deaths. Animal models can provide an opportunity to mechanistically interrogate causes of sex differences in the pathogenesis of SARS-CoV-2. Adult male and female golden Syrian hamsters (8-10 weeks of age) were inoculated intranasally with 10 5 TCID 50 of SARS-CoV-2/USA-WA1/2020 and euthanized at several time points during the acute (i.e., virus actively replicating) and recovery (i.e., after the infectious virus has been cleared) phases of infection. There was no mortality, but infected male hamsters experienced greater morbidity, losing a greater percentage of body mass, developing more extensive pneumonia as noted on chest computed tomography, and recovering more slowly than females. Treatment of male hamsters with estradiol did not alter pulmonary damage. Virus titers in respiratory tissues, including nasal turbinates, trachea, and lungs, and pulmonary cytokine concentrations, including IFNb and TNFa, were comparable between the sexes. However, during the recovery phase of infection, females mounted two-fold greater IgM, IgG, and IgA responses against the receptor-binding domain of the spike protein (S-RBD) in both plasma and respiratory tissues. Female hamsters also had significantly greater IgG antibodies against whole inactivated SARS-CoV-2 and mutant S-RBDs, as well as virus neutralizing antibodies in plasma. The development of an animal model to study COVID-19 sex differences will allow for a greater mechanistic understanding of the SARS-CoV-2 associated sex differences seen in the human population.

9.
J Clin Invest ; 131(1)2021 01 04.
Article in English | MEDLINE | ID: mdl-33079726

ABSTRACT

Although platelets are the cellular mediators of thrombosis, they are also immune cells. Platelets interact both directly and indirectly with immune cells, impacting their activation and differentiation, as well as all phases of the immune response. Megakaryocytes (Mks) are the cell source of circulating platelets, and until recently Mks were typically only considered bone marrow-resident (BM-resident) cells. However, platelet-producing Mks also reside in the lung, and lung Mks express greater levels of immune molecules compared with BM Mks. We therefore sought to define the immune functions of lung Mks. Using single-cell RNA sequencing of BM and lung myeloid-enriched cells, we found that lung Mks, which we term MkL, had gene expression patterns that are similar to antigen-presenting cells. This was confirmed using imaging and conventional flow cytometry. The immune phenotype of Mks was plastic and driven by the tissue immune environment, as evidenced by BM Mks having an MkL-like phenotype under the influence of pathogen receptor challenge and lung-associated immune molecules, such as IL-33. Our in vitro and in vivo assays demonstrated that MkL internalized and processed both antigenic proteins and bacterial pathogens. Furthermore, MkL induced CD4+ T cell activation in an MHC II-dependent manner both in vitro and in vivo. These data indicated that MkL had key immune regulatory roles dictated in part by the tissue environment.


Subject(s)
Antigen-Presenting Cells/immunology , Lung/immunology , Megakaryocytes/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/immunology , Lymphocyte Activation , Mice , Mice, Knockout , RNA-Seq , Single-Cell Analysis
11.
FEBS Open Bio ; 10(10): 2021-2039, 2020 10.
Article in English | MEDLINE | ID: mdl-33017084

ABSTRACT

Cervicovaginal secretions, or their components collected, are referred to as cervicovaginal lavage (CVL). CVL constituents have utility as biomarkers and play protective roles in wound healing and against HIV-1 infection. However, several components of cervicovaginal fluids are less well understood, such as extracellular RNAs and their carriers, for example, extracellular vesicles (EVs). EVs comprise a wide array of double-leaflet membrane extracellular particles and range in diameter from 30 nm to over one micron. The aim of this study was to determine whether differentially regulated CVL microRNAs (miRNAs) might influence retrovirus replication. To this end, we characterized EVs and miRNAs of primate CVL during the menstrual cycle and simian immunodeficiency virus (SIV) infection of macaques. EVs were enriched by stepped ultracentrifugation, and miRNA profiles were assessed with a medium-throughput stem-loop/hydrolysis probe qPCR platform. Whereas hormone cycling was abnormal in infected subjects, EV concentration correlated with progesterone concentration in uninfected subjects. miRNAs were present predominantly in the EV-depleted CVL supernatant. Only a small number of CVL miRNAs changed during the menstrual cycle or SIV infection, for example, miR-186-5p, which was depleted in retroviral infection. This miRNA inhibited HIV replication in infected macrophages in vitro. In silico target prediction and pathway enrichment analyses shed light on the probable functions of miR-186-5p in hindering HIV infections via immunoregulation, T-cell regulation, disruption of viral pathways, etc. These results provide further evidence for the potential of EVs and small RNAs as biomarkers or effectors of disease processes in the reproductive tract.


Subject(s)
Extracellular Vesicles/genetics , Macrophages/virology , MicroRNAs/genetics , Animals , Biomarkers/metabolism , Cervix Uteri/metabolism , Cervix Uteri/virology , Extracellular Vesicles/metabolism , Female , Gene Expression/genetics , Gene Expression Profiling/methods , Gene Expression Regulation/genetics , HIV Infections/genetics , HIV Infections/metabolism , Macaca mulatta , Macrophages/metabolism , Menstrual Cycle/genetics , Menstrual Cycle/physiology , MicroRNAs/analysis , MicroRNAs/metabolism , Primates/genetics , Simian Acquired Immunodeficiency Syndrome/genetics , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/pathogenicity , Transcriptome/genetics , Vagina/metabolism , Vagina/virology , Vaginal Douching/methods
12.
J Neuroinflammation ; 17(1): 273, 2020 Sep 17.
Article in English | MEDLINE | ID: mdl-32943056

ABSTRACT

BACKGROUND: Osteopontin (OPN) as a secreted signaling protein is dramatically induced in response to cellular injury and neurodegeneration. Microglial inflammatory responses in the brain are tightly associated with the neuropathologic hallmarks of neurodegenerative disease, but understanding of the molecular mechanisms remains in several contexts poorly understood. METHODS: Micro-positron emission tomography (PET) neuroimaging using radioligands to detect increased expression of the translocator protein (TSPO) receptor in the brain is a non-invasive tool used to track neuroinflammation in living mammals. RESULTS: In humanized, chronically HIV-infected female mice in which OPN expression was knocked down with functional aptamers, uptake of TSPO radioligand DPA-713 was markedly upregulated in the cortex, olfactory bulb, basal forebrain, hypothalamus, and central grey matter compared to controls. Microglia immunoreactive for Iba-1 were more abundant in some HIV-infected mice, but overall, the differences were not significant between groups. TSPO+ microglia were readily detected by immunolabeling of post-mortem brain tissue and unexpectedly, two types of neurons also selectively stained positive for TSPO. The reactive cells were the specialized neurons of the cerebellum, Purkinje cells, and a subset of tyrosine hydroxylase-positive neurons of the substantia nigra. CONCLUSIONS: In female mice with wild-type levels of osteopontin, increased levels of TSPO ligand uptake in the brain was seen in animals with the highest levels of persistent HIV replication. In contrast, in mice with lower levels of osteopontin, the highest levels of TSPO uptake was seen, in mice with relatively low levels of persistent infection. These findings suggest that osteopontin may act as a molecular brake regulating in the brain, the inflammatory response to HIV infection.


Subject(s)
Brain/metabolism , HIV Infections/metabolism , Inflammation Mediators/metabolism , Osteopontin/metabolism , Receptors, GABA/metabolism , Animals , Brain/virology , Chronic Disease , Female , HIV Infections/genetics , Humans , Male , Mice , Mice, SCID , Mice, Transgenic , Osteopontin/genetics , Receptors, GABA/genetics , Viral Load/methods , Viral Load/physiology
13.
Platelets ; 31(7): 860-868, 2020 Oct 02.
Article in English | MEDLINE | ID: mdl-31726921

ABSTRACT

Platelet decline is a feature of many acute viral infections, including cytomegalovirus (CMV) infection in humans and mice. Platelet sequestration in association with other cells, including endothelium and circulating leukocytes, can contribute to this decline and influence the immune response to and pathogenesis of viral infection. We sought to determine if platelet-endothelial associations (PEAs) contribute to platelet decline during acute murine CMV (mCMV) infection, and if these associations affect viral load and production. Male BALB/c mice were infected with mCMV (Smith strain), euthanized at timepoints throughout acute infection and compared to uninfected controls. An increase in PEA formation was confirmed in the salivary gland at all post-inoculation timepoints using immunohistochemistry for CD41+ platelets co-localizing with CD34+ vessels. Platelet depletion did not change amount of viral DNA or timecourse of infection, as measured by qPCR. However, platelet depletion reduced viral titer of mCMV in the salivary glands while undepleted controls demonstrated robust replication in the tissue by plaque assay. Thus, platelet associations with endothelium may enhance the ability of mCMV to replicate within the salivary gland. Further work is needed to determine the mechanisms behind this effect and if pharmacologic inhibition of PEAs may reduce CMV production in acutely infected patients.


Subject(s)
Blood Platelets/metabolism , Cytomegalovirus/pathogenicity , Endothelial Cells/metabolism , Salivary Glands/virology , Animals , Disease Models, Animal , Humans , Male , Mice, Inbred BALB C
14.
mBio ; 10(4)2019 08 20.
Article in English | MEDLINE | ID: mdl-31431552

ABSTRACT

Human immunodeficiency virus (HIV) eradication or long-term suppression in the absence of antiretroviral therapy (ART) requires an understanding of all viral reservoirs that could contribute to viral rebound after ART interruption. CD4 T cells (CD4s) are recognized as the predominant reservoir in HIV type 1 (HIV-1)-infected individuals. However, macrophages are also infected by HIV-1 and simian immunodeficiency virus (SIV) during acute infection and may persist throughout ART, contributing to the size of the latent reservoir. We sought to determine whether tissue macrophages contribute to the SIVmac251 reservoir in suppressed macaques. Using cell-specific quantitative viral outgrowth assays (CD4-QVOA and MΦ-QVOA), we measured functional latent reservoirs in CD4s and macrophages in ART-suppressed SIVmac251-infected macaques. Spleen, lung, and brain in all suppressed animals contained latently infected macrophages, undetectable or low-level SIV RNA, and detectable SIV DNA. Silent viral genomes with potential for reactivation and viral spread were also identified in blood monocytes, although these cells might not be considered reservoirs due to their short life span. Additionally, virus produced in the MΦ-QVOA was capable of infecting healthy activated CD4s. Our results strongly suggest that functional latent reservoirs in CD4s and macrophages can contribute to viral rebound and reestablishment of productive infection after ART interruption. These findings should be considered in the design and implementation of future HIV cure strategies.IMPORTANCE This study provides further evidence that the latent reservoir is comprised of both CD4+ T cells and myeloid cells. The data presented here suggest that CD4+ T cells and macrophages found throughout tissues in the body can contain replication-competent SIV and contribute to rebound of the virus after treatment interruption. Additionally, we have shown that monocytes in blood contain latent virus and, though not considered a reservoir themselves due to their short life span, could contribute to the size of the latent reservoir upon entering the tissue and differentiating into long-lived macrophages. These new insights into the size and location of the SIV reservoir using a model that is heavily studied in the HIV field could have great implications for HIV-infected individuals and should be taken into consideration with the development of future HIV cure strategies.


Subject(s)
Anti-Retroviral Agents/pharmacology , CD4-Positive T-Lymphocytes/virology , HIV Infections/virology , Macrophages/virology , Myeloid Cells/virology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/drug effects , Virus Latency , Animals , Disease Models, Animal , Genome, Viral , Lung , Macaca mulatta , Male , Monocytes , Simian Immunodeficiency Virus/genetics , Spleen , Viral Load , Virus Replication
15.
J Virol ; 93(15)2019 08 01.
Article in English | MEDLINE | ID: mdl-31118264

ABSTRACT

Understanding the cellular and anatomical sites of latent virus that contribute to human immunodeficiency virus (HIV) rebound is essential for eradication. In HIV-positive patients, CD4+ T lymphocytes comprise a well-defined functional latent reservoir, defined as cells containing transcriptionally silent genomes able to produce infectious virus once reactivated. However, the persistence of infectious latent virus in CD4+ T cells in compartments other than blood and lymph nodes is unclear. Macrophages (Mϕ) are infected by HIV/simian immunodeficiency virus (SIV) and are likely to carry latent viral genomes during antiretroviral therapy (ART), contributing to the reservoir. Currently, the gold standard assay used to measure reservoirs containing replication-competent virus is the quantitative viral outgrowth assay (QVOA). Using an SIV-macaque model, the CD4+ T cell and Mϕ functional latent reservoirs were measured in various tissues using cell-specific QVOAs. Our results showed that blood, spleen, and lung in the majority of suppressed animals contain latently infected Mϕs. Surprisingly, the numbers of CD4+ T cells, monocytes, and Mϕs carrying infectious genomes in blood and spleen were at comparable frequencies (∼1 infected cell per million). We also demonstrate that ex vivo viruses produced in the Mϕ QVOA are capable of infecting activated CD4+ T cells. These results strongly suggest that latently infected tissue Mϕs can reestablish productive infection upon treatment interruption. This study provides the first comparison of CD4+ T cell and Mϕ functional reservoirs in a macaque model. It is the first confirmation of the persistence of latent genomes in monocytes in blood and Mϕs in the spleen and lung of SIV-infected ART-suppressed macaques. Our results demonstrate that transcriptionally silent genomes in Mϕs can contribute to viral rebound after ART interruption and should be considered in future HIV cure strategies.IMPORTANCE This study suggests that CD4+ T cells found throughout tissues in the body can contain replication-competent SIV and contribute to rebound of the virus after treatment interruption. In addition, this study demonstrates that macrophages in tissues are another cellular reservoir for SIV and may contribute to viral rebound after treatment interruption. This new insight into the size and location of the SIV reservoir could have great implications for HIV-infected individuals and should be taken into consideration for the development of future HIV cure strategies.


Subject(s)
Anti-Retroviral Agents/administration & dosage , CD4-Positive T-Lymphocytes/virology , Macrophages/virology , Simian Acquired Immunodeficiency Syndrome/drug therapy , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/physiology , Virus Latency , Animals , Blood Cells/virology , Cells, Cultured , Lung/virology , Macaca , Simian Immunodeficiency Virus/isolation & purification , Spleen/virology
16.
Comp Med ; 69(2): 151-154, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30902118

ABSTRACT

In November 2015, an 83-d-old juvenile male common marmoset (Callithrix jacchus) in good body condition was found dead in his family cage with no previous premonitory signs. Necropsy revealed a gas-distended abdomen, feces-distended large bowel, and a full-thickness distal colonic perforation resulting in fecal peritonitis. The distal colon ended in a blind pouch at 7 mm prior to the expected anal opening, consistent with atresia ani. Here we present this case, briefly discuss the human and veterinary literature regarding correction of anorectal malformations, and highlight the importance of identifying such devastating congenital defects in breeding colonies while limiting the disruption and handling of seemingly healthy, young NHP raised in a complex social setting.


Subject(s)
Anus, Imperforate/veterinary , Colon/injuries , Monkey Diseases/congenital , Animals , Callithrix , Fatal Outcome , Male , Rupture/veterinary
17.
Curr Top Microbiol Immunol ; 417: 111-130, 2018.
Article in English | MEDLINE | ID: mdl-29770863

ABSTRACT

Lentiviruses infect myeloid cells, leading to acute infection followed by persistent/latent infections not cleared by the host immune system. HIV and SIV are lentiviruses that infect CD4+ lymphocytes in addition to myeloid cells in blood and tissues. HIV infection of myeloid cells in brain, lung, and heart causes tissue-specific diseases that are mostly observed during severe immunosuppression, when the number of circulating CD4+ T cells declines to exceeding low levels. Antiretroviral therapy (ART) controls viral replication but does not successfully eliminate latent virus, which leads to viral rebound once ART is interrupted. HIV latency in CD4+ lymphocytes is the main focus of research and concern when HIV eradication efforts are considered. However, myeloid cells in tissues are long-lived and have not been routinely examined as a potential reservoir. Based on a quantitative viral outgrowth assay (QVOA) designed to evaluate latently infected CD4+ lymphocytes, a similar protocol was developed for the assessment of latently infected myeloid cells in blood and tissues. Using an SIV ART model, it was demonstrated that myeloid cells in blood and brain harbor latent SIV that can be reactivated and produce infectious virus in vitro, demonstrating that myeloid cells have the potential to be an additional latent reservoir of HIV that should be considered during HIV eradication strategies.


Subject(s)
Central Nervous System/virology , Disease Models, Animal , Macaca mulatta/virology , Macrophages/virology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/physiology , Virus Latency , Animals , CD4-Positive T-Lymphocytes/virology , HIV Infections/virology , Humans , Viral Load
18.
Am J Pathol ; 188(1): 125-134, 2018 01.
Article in English | MEDLINE | ID: mdl-29229308

ABSTRACT

A retrospective neuropathologic review of 30 SIV-infected pigtailed macaques receiving combination antiretroviral therapy (cART) was conducted. Seventeen animals with lymphocyte-dominant inflammation in the brain and/or meninges that clearly was morphologically distinct from prototypic SIV encephalitis and human immunodeficiency virus encephalitis were identified. Central nervous system (CNS) infiltrates in cART-treated macaques primarily comprised CD20+ B cells and CD3+ T cells with fewer CD68+ macrophages. Inflammation was associated with low levels of SIV RNA in the brain as shown by in situ hybridization, and generally was observed in animals with episodes of cerebrospinal fluid (CSF) viral rebound or sustained plasma and CSF viremia during treatment. Although the lymphocytic CNS inflammation in these macaques shared morphologic characteristics with uncommon immune-mediated neurologic disorders reported in treated HIV patients, including CNS immune reconstitution inflammatory syndrome and neurosymptomatic CSF escape, the high prevalence of CNS lesions in macaques suggests that persistent adaptive immune responses in the CNS also may develop in neuroasymptomatic or mildly impaired HIV patients yet remain unrecognized given the lack of access to CNS tissue for histopathologic evaluation. Continued investigation into the mechanisms and outcomes of CNS inflammation in cART-treated, SIV-infected macaques will advance our understanding of the consequences of residual CNS HIV replication in patients on cART, including the possible contribution of adaptive immune responses to HIV-associated neurocognitive disorders.


Subject(s)
Anti-Retroviral Agents/therapeutic use , Brain/pathology , Encephalitis/pathology , Lymphocytes/pathology , Meningitis/pathology , Simian Acquired Immunodeficiency Syndrome/pathology , Animals , Encephalitis/complications , Inflammation/pathology , Macaca nemestrina , Male , Meningitis/complications , Simian Acquired Immunodeficiency Syndrome/complications , Simian Acquired Immunodeficiency Syndrome/drug therapy , Simian Immunodeficiency Virus , Viral Load
19.
J Neurovirol ; 24(2): 204-212, 2018 04.
Article in English | MEDLINE | ID: mdl-28975505

ABSTRACT

Simian immunodeficiency virus (SIV) infection of pigtailed macaques is a highly representative and well-characterized animal model for HIV neuropathogenesis studies that provides an excellent opportunity to study and develop prognostic markers of HIV-associated neurocognitive disorders (HAND) for HIV-infected individuals. SIV studies can be performed in a controlled setting that enhances reproducibility and offers high-translational value. Similar to observations in HIV-infected patients receiving antiretroviral therapy (ART), ongoing neurodegeneration and inflammation are present in SIV-infected pigtailed macaques treated with suppressive ART. By developing quantitative viral outgrowth assays that measure both CD4+ T cells and macrophages harboring replication competent SIV as well as a highly sensitive mouse-based viral outgrowth assay, we have positioned the SIV/pigtailed macaque model to advance our understanding of latent cellular reservoirs, including potential CNS reservoirs, to promote HIV cure. In addition to contributing to our understanding of the pathogenesis of HAND, the SIV/pigtailed macaque model also provides an excellent opportunity to test innovative approaches to eliminate the latent HIV reservoir in the brain.


Subject(s)
Antiviral Agents/pharmacology , Central Nervous System/drug effects , Cognitive Dysfunction/drug therapy , Disease Models, Animal , Simian Immunodeficiency Virus/drug effects , Virus Latency/drug effects , AIDS Dementia Complex/drug therapy , AIDS Dementia Complex/immunology , AIDS Dementia Complex/physiopathology , AIDS Dementia Complex/virology , Animals , Antiretroviral Therapy, Highly Active , Central Nervous System/virology , Cognitive Dysfunction/immunology , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/virology , Humans , Macaca nemestrina , Macrophages/drug effects , Macrophages/immunology , Macrophages/virology , Simian Acquired Immunodeficiency Syndrome/drug therapy , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/physiopathology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/pathogenicity , Simian Immunodeficiency Virus/physiology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/virology , Viral Load/drug effects , Virus Latency/physiology
20.
Retrovirology ; 14(1): 52, 2017 Nov 21.
Article in English | MEDLINE | ID: mdl-29157283

ABSTRACT

Sensitive assays are needed for the detection of residual viral reservoirs in HIV-1-infected subjects on suppressive combination antiretroviral therapy regimens to determine whether eradication strategies are effective. Mouse viral outgrowth assays have recently been developed and have the potential to be more sensitive than traditional in vitro quantitative viral outgrowth assays. In this article we describe these assays and review several studies that have used them to measure the latent reservoir.


Subject(s)
CD4-Positive T-Lymphocytes/virology , Disease Reservoirs/virology , HIV Infections/virology , HIV-1/physiology , Virus Latency , Animals , Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use , CD4-Positive T-Lymphocytes/immunology , HIV Infections/drug therapy , HIV-1/drug effects , HIV-1/growth & development , HIV-1/isolation & purification , Humans , Plasma/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...