Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2810: 161-180, 2024.
Article in English | MEDLINE | ID: mdl-38926279

ABSTRACT

Bi- and multispecific antibody formats allow the development of new therapeutic strategies to address previously unmet medical needs. However, due to the increased complexity (e.g., the interface design and the presence of multiple binders), such molecules are generally more challenging to express and purify compared to standard monoclonal antibodies (mAbs). We describe here an optimized methodology to express and purify basic bispecific antibodies using the BEAT® interface. This interface allows to generate antibodies with very high levels of heterodimer product (reported titers exceed 10 g/L) and comes with a built-in purification strategy allowing removal of residual levels of undesired product-related impurities (e.g., homodimers and half molecules).


Subject(s)
Antibodies, Bispecific , Antibodies, Bispecific/isolation & purification , Humans , Antibodies, Monoclonal/isolation & purification , Antibodies, Monoclonal/biosynthesis , Gene Expression , Protein Engineering/methods , Animals
2.
J Biotechnol ; 389: 30-42, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38685416

ABSTRACT

Ichnos has developed a multi-specific antibody platform based on the BEAT® (Bispecific engagement by antibodies based on the T-cell receptor) interface. The increased complexity of the bi- and multi-specific formats generated with this platform makes these molecules difficult-to-express proteins compared to standard monoclonal antibodies (mAbs). This report describes how expression limitations of a bi-specific bi-paratopic BEAT antibody were improved in a holistic approach. An initial investigation allowed identification of a misbalance in the subunits composing the BEAT antibody as the potential root cause. This misbalance was then addressed by a signal peptide optimization, and the overall expression level was increased by the combination of two vector design elements on a single gene vector. Further improvements were made in the selection of cell populations and an upstream (USP) platform process was applied in combination with a cell culture temperature shift. This allowed titer levels of up to 6 g/L to be reached with these difficult-to-express proteins. Furthermore, a high-density seeding process was developed that allowed titers of around 11 g/L for the BEAT antibody, increasing the initial titer by a factor of 10. The approach was successfully applied to a tri-specific antibody with titer levels reaching 10 g/L. In summary, a platform process for difficult-to-express proteins was developed using molecular biology tools, cell line development, upstream process optimization and process intensification.


Subject(s)
Antibodies, Monoclonal , Animals , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/biosynthesis , CHO Cells , Cricetulus , Humans
3.
J Biotechnol ; 384: 45-54, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38403131

ABSTRACT

Recently developed multi-specific antibody formats enable new therapeutic concepts. Conveniently, formats with an Fc domain allow purification in well-established mAb platform processes. However, due to the structural complexity of the formats, the assembled molecules may be sensitive to extreme pH commonly used for viral inactivation. An alternative to low pH incubation for virus inactivation is the use of a mixture of tri-n-butyl phosphate (TnBP, solvent) and Polysorbate 80 (PS80, detergent). While TnBP is toxic, this combination has a long history of use in the manufacturing of human plasma-derived products that are sensitive to low or high pH incubation. Data are provided demonstrating that the solvent/detergent (S/D) treatment using TnBP and PS80 can be successfully used for pH-sensitive, multi-specific antibody formats in the clarified cell culture fluid (CCCF). A different placement of the S/D within the purification process, namely during the capture by Protein A (PA), has been evaluated. This alternative placement allows effective viral inactivation by S/D while preserving the viral reduction and viral inactivation achieved through the PA step itself, enabling the cumulation of these effects. Furthermore, the process alternative simplifies the liquid handling by reducing the added volumes of the required S/D liquids, thus reducing the amount of toxic TnBP to a minimum. Data are shown demonstrating a complete removal of TnBP and PS80 in the process.


Subject(s)
Detergents , Virus Inactivation , Humans , Factor VIII/metabolism , Antibodies , Solvents , Hydrogen-Ion Concentration
SELECTION OF CITATIONS
SEARCH DETAIL