Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Med Chem ; 59(15): 7252-67, 2016 Aug 11.
Article in English | MEDLINE | ID: mdl-27411843

ABSTRACT

Optimization of the potency and pharmacokinetic profile of 2,3,4-trisubstituted quinoline, 4, led to the discovery of two potent, selective, and orally bioavailable PI3Kδ inhibitors, 6a (AM-0687) and 7 (AM-1430). On the basis of their improved profile, these analogs were selected for in vivo pharmacodynamic (PD) and efficacy experiments in animal models of inflammation. The in vivo PD studies, which were carried out in a mouse pAKT inhibition animal model, confirmed the observed potency of 6a and 7 in biochemical and cellular assays. Efficacy experiments in a keyhole limpet hemocyanin model in rats demonstrated that administration of either 6a or 7 resulted in a strong dose-dependent reduction of IgG and IgM specific antibodies. The excellent in vitro and in vivo profiles of these analogs make them suitable for further development.


Subject(s)
Drug Discovery , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Quinolines/pharmacology , Animals , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , Class Ia Phosphatidylinositol 3-Kinase/metabolism , Dose-Response Relationship, Drug , Humans , Mice , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyridines/chemical synthesis , Pyridines/chemistry , Quinolines/chemical synthesis , Quinolines/chemistry , Structure-Activity Relationship
2.
J Med Chem ; 59(1): 431-47, 2016 Jan 14.
Article in English | MEDLINE | ID: mdl-26652588

ABSTRACT

Lead optimization efforts resulted in the discovery of two potent, selective, and orally bioavailable PI3Kδ inhibitors, 1 (AM-8508) and 2 (AM-9635), with good pharmacokinetic properties. The compounds inhibit B cell receptor (BCR)-mediated AKT phosphorylation (pAKT) in PI3Kδ-dependent in vitro cell based assays. These compounds which share a benzimidazole bicycle are effective when administered in vivo at unbound concentrations consistent with their in vitro cell potency as a consequence of improved unbound drug concentration with lower unbound clearance. Furthermore, the compounds demonstrated efficacy in a Keyhole Limpet Hemocyanin (KLH) study in rats, where the blockade of PI3Kδ activity by inhibitors 1 and 2 led to effective inhibition of antigen-specific IgG and IgM formation after immunization with KLH.


Subject(s)
Benzimidazoles/chemical synthesis , Benzimidazoles/pharmacology , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Animals , B-Lymphocytes/drug effects , Crystallography, X-Ray , Hemocyanins/drug effects , Humans , Immunoglobulin G/drug effects , Immunoglobulin M/drug effects , Mice , Models, Molecular , Rats , Structure-Activity Relationship
3.
Am J Respir Cell Mol Biol ; 53(6): 810-21, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25919006

ABSTRACT

Asthma is a heterogeneous disease characterized by airway inflammation and hyperreactivity. IL-17 receptor A (IL-17RA) is a shared receptor subunit required for activity of IL-17 family cytokines, including IL-17A and IL-25. IL-17A and IL-25 induce different proinflammatory responses, and concentrations are elevated in subjects with asthma. However, the individual contributions of IL-17A and IL-25 to disease pathogenesis are unclear. We explored proinflammatory activities of the IL-17 pathway in models of pulmonary inflammation and assessed its effects on contractility of human bronchial airway smooth muscle. In two mouse models, IL-17RA, IL-17RB, or IL-25 blockade reduced airway inflammation and airway hyperreactivity. Individually, IL-17A and IL-25 enhanced contractility of human bronchial smooth muscle induced by methacholine or carbachol. IL-17A had more pronounced effects on methacholine-induced contractility in bronchial rings from donors with asthma compared with donors without asthma. Blocking the IL-17 pathway via IL-17RA may be a useful therapy for some patients with asthma by reducing pulmonary inflammation and airway hyperreactivity.


Subject(s)
Asthma/metabolism , Receptors, Interleukin-17/physiology , Animals , Asthma/immunology , Bronchi/immunology , Bronchi/pathology , Cells, Cultured , Gene Expression , Humans , Interleukin-17/physiology , Interleukins/physiology , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Muscle Contraction , Myocytes, Smooth Muscle/immunology , Myocytes, Smooth Muscle/metabolism , Signal Transduction
5.
J Med Chem ; 58(1): 480-511, 2015 Jan 08.
Article in English | MEDLINE | ID: mdl-25469863

ABSTRACT

The development and optimization of a series of quinolinylpurines as potent and selective PI3Kδ kinase inhibitors with excellent physicochemical properties are described. This medicinal chemistry effort led to the identification of 1 (AMG319), a compound with an IC50 of 16 nM in a human whole blood assay (HWB), excellent selectivity over a large panel of protein kinases, and a high level of in vivo efficacy as measured by two rodent disease models of inflammation.


Subject(s)
Adenosine/pharmacology , Autoimmune Diseases/prevention & control , Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Inflammation/prevention & control , Protein Kinase Inhibitors/pharmacology , Quinolines/pharmacology , Adenosine/chemistry , Adenosine/metabolism , Animals , Cells, Cultured , Class I Phosphatidylinositol 3-Kinases/chemistry , Class I Phosphatidylinositol 3-Kinases/metabolism , Crystallography, X-Ray , Disease Models, Animal , Drug Discovery , Female , Humans , Mice, Inbred BALB C , Mice, Transgenic , Models, Chemical , Models, Molecular , Molecular Structure , Protein Binding , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/metabolism , Protein Structure, Tertiary , Quinolines/chemistry , Quinolines/metabolism , Rats, Inbred Lew , Sf9 Cells , Structure-Activity Relationship
6.
J Med Chem ; 55(17): 7667-85, 2012 Sep 13.
Article in English | MEDLINE | ID: mdl-22876881

ABSTRACT

Structure-based rational design led to the synthesis of a novel series of potent PI3K inhibitors. The optimized pyrrolopyridine analogue 63 was a potent and selective PI3Kß/δ dual inhibitor that displayed suitable physicochemical properties and pharmacokinetic profile for animal studies. Analogue 63 was found to be efficacious in animal models of inflammation including a keyhole limpet hemocyanin (KLH) study and a collagen-induced arthritis (CIA) disease model of rheumatoid arthritis. These studies highlight the potential therapeutic value of inhibiting both the PI3Kß and δ isoforms in the treatment of a number of inflammatory diseases.


Subject(s)
Drug Discovery , Drug Evaluation, Preclinical , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/pharmacology , Models, Molecular
8.
Eur J Pharmacol ; 610(1-3): 110-8, 2009 May 21.
Article in English | MEDLINE | ID: mdl-19292985

ABSTRACT

The ICOS (Inducible T cell Co-Stimulator)/B7RP-1 (B7-related protein 1) interaction is critical for the proper activation of a T lymphocyte. In this manuscript we describe a systematic in vivo approach to determine the level of blockade required to impair the generation of a T cell-dependent antibody response. We have developed an overall strategy for correlating drug exposure, target saturation, and efficacy in a biological response that can be generalized for most protein therapeutics. Using this strategy, we determined that low levels of B7RP-1 blockade are still sufficient to inhibit the immune response. These data suggest that contact between the T cell and the antigen-presenting cell during antigen presentation is much more sensitive to inhibition than previously believed and that ICOS/B7RP-1 blockade may be efficacious in the treatment of autoimmune diseases.


Subject(s)
B7-1 Antigen/pharmacology , Immune System Phenomena/drug effects , Aluminum Hydroxide/immunology , Animals , Antibodies, Monoclonal/pharmacology , Antigen-Presenting Cells/immunology , Antigens, CD19/metabolism , B-Lymphocytes/metabolism , B7-1 Antigen/genetics , Binding Sites , CD3 Complex/metabolism , Cytokines/blood , Dose-Response Relationship, Drug , Female , Fluorescein-5-isothiocyanate/metabolism , Fluorescent Dyes/metabolism , Hemocyanins/immunology , Inducible T-Cell Co-Stimulator Ligand , Mice , Mice, Inbred BALB C , Models, Immunological , Protein Binding , Recombinant Fusion Proteins/pharmacology , T-Lymphocytes/metabolism , Temperature , Time Factors
9.
J Immunol ; 182(3): 1421-8, 2009 Feb 01.
Article in English | MEDLINE | ID: mdl-19155489

ABSTRACT

Autoimmune diseases are marked by the presence of class-switched, high-affinity autoantibodies with pathogenic potential. Costimulation plays an important role in the activation of T cells and the development of T cell-dependent B cell responses. ICOS plays an indispensable role in the development of follicular helper T cells (T(FH) cells), which provide cognate help to germinal center (GC) B cells. We show that the levels of T(FH) cells and GC B cells in two different models of autoimmunity, the New Zealand Black/New Zealand White (NZB/NZW) F(1) mouse model of systemic lupus erythematosus and the collagen-induced arthritis model of rheumatoid arthritis, are dependent on the maintenance of the ICOS/B7RP-1 pathway. Treatment with an anti-B7RP-1 Ab ameliorates disease manifestations and leads to a decrease in T(FH) cells and GC B cells as well as an overall decrease in the frequency of ICOS(+) T cells. Coculture experiments of Ag-primed B cells with CXCR5(+) or CXCR5(-) T cells show that blocking B7RP-1 does not directly impact the production of IgG by B cells. These findings further support the role of ICOS in autoimmunity and suggest that the expansion of the T(FH) cell pool is an important mechanism by which ICOS regulates Ab production.


Subject(s)
Antibodies, Blocking/administration & dosage , Antibodies, Monoclonal/administration & dosage , Autoantibodies/biosynthesis , B7-1 Antigen/immunology , Cell Differentiation/immunology , Germinal Center/immunology , Signal Transduction/immunology , T-Lymphocytes, Helper-Inducer/immunology , Animals , Antigens, Differentiation, T-Lymphocyte/immunology , Antigens, Differentiation, T-Lymphocyte/physiology , Arthritis, Experimental/immunology , Arthritis, Experimental/pathology , Arthritis, Experimental/therapy , Autoantibodies/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , B7-1 Antigen/physiology , Female , Germinal Center/metabolism , Germinal Center/pathology , Inducible T-Cell Co-Stimulator Ligand , Inducible T-Cell Co-Stimulator Protein , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/pathology , Lupus Erythematosus, Systemic/therapy , Lymphocyte Activation/immunology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred DBA , Mice, Inbred NZB , Random Allocation , T-Lymphocytes, Helper-Inducer/metabolism , T-Lymphocytes, Helper-Inducer/pathology
10.
J Med Chem ; 51(6): 1681-94, 2008 Mar 27.
Article in English | MEDLINE | ID: mdl-18321037

ABSTRACT

The lymphocyte-specific kinase (Lck), a member of the Src family of cytoplasmic tyrosine kinases, is expressed in T cells and natural killer (NK) cells. Genetic evidence, including knockout mice and human mutations, demonstrates that Lck kinase activity is critical for normal T cell development, activation, and signaling. Selective inhibition of Lck is expected to offer a new therapy for the treatment of T-cell-mediated autoimmune and inflammatory disease. With the aid of X-ray structure-based analysis, aminopyrimidine amides 2 and 3 were designed from aminoquinazolines 1, which had previously been demonstrated to exhibit potent inhibition of Lck and T cell proliferation. In this report, we describe the synthesis and structure-activity relationships of a series of novel aminopyrimidine amides 3 possessing improved cellular potency and selectivity profiles relative to their aminoquinazoline predecessors 1. Orally bioavailable compound 13b inhibited the anti-CD3-induced production of interleukin-2 (IL-2) in mice in a dose-dependent manner (ED 50 = 9.4 mg/kg).


Subject(s)
Amides/pharmacology , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , T-Lymphocytes/drug effects , Administration, Oral , Amides/chemical synthesis , Amides/chemistry , Animals , Cell Proliferation/drug effects , Crystallography, X-Ray , Dose-Response Relationship, Drug , Drug Design , Enzyme Activation/drug effects , Female , Humans , Interleukin-2/antagonists & inhibitors , Interleukin-2/metabolism , Killer Cells, Natural/drug effects , Killer Cells, Natural/metabolism , Lipopolysaccharides/pharmacology , Male , Mice , Mice, Inbred BALB C , Mice, Knockout , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , Signal Transduction/physiology , Stereoisomerism , Structure-Activity Relationship , T-Lymphocytes/metabolism
11.
J Med Chem ; 49(19): 5671-86, 2006 Sep 21.
Article in English | MEDLINE | ID: mdl-16970394

ABSTRACT

The lymphocyte-specific kinase (Lck) is a cytoplasmic tyrosine kinase of the Src family expressed in T cells and natural killer (NK) cells. Genetic evidence in both mice and humans demonstrates that Lck kinase activity is critical for signaling mediated by the T cell receptor (TCR), which leads to normal T cell development and activation. Selective inhibition of Lck is expected to offer a new therapy for the treatment of T-cell-mediated autoimmune and inflammatory disease. Screening of our kinase-preferred collection identified aminoquinazoline 1 as a potent, nonselective inhibitor of Lck and T cell proliferation. In this report, we describe the synthesis and structure-activity relationships of a series of novel aminoquinazolines possessing in vitro mechanism-based potency. Optimized, orally bioavailable compounds 32 and 47 exhibit anti-inflammatory activity (ED(50) of 22 and 11 mg/kg, respectively) in the anti-CD3-induced production of interleukin-2 (IL-2) in mice.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Benzamides/chemical synthesis , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/antagonists & inhibitors , Quinazolines/chemical synthesis , Administration, Oral , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Benzamides/chemistry , Benzamides/pharmacology , Biological Availability , Cell Proliferation/drug effects , Cells, Cultured , Female , Humans , In Vitro Techniques , Interleukin-2/biosynthesis , Male , Mice , Mice, Inbred BALB C , Models, Molecular , Quinazolines/chemistry , Quinazolines/pharmacology , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , T-Lymphocytes/cytology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , Tumor Necrosis Factor-alpha/biosynthesis
12.
J Med Chem ; 49(16): 4981-91, 2006 Aug 10.
Article in English | MEDLINE | ID: mdl-16884310

ABSTRACT

The lymphocyte-specific kinase (Lck) is a cytoplasmic tyrosine kinase of the Src family expressed in T cells and NK cells. Genetic evidence in both mice and humans demonstrates that Lck kinase activity is critical for signaling mediated by the T cell receptor (TCR), which leads to normal T cell development and activation. A small molecule inhibitor of Lck is expected to be useful in the treatment of T cell-mediated autoimmune and inflammatory disorders and/or organ transplant rejection. In this paper, we describe the synthesis, structure-activity relationships, and pharmacological characterization of 2-aminopyrimidine carbamates, a new class of compounds with potent and selective inhibition of Lck. The most promising compound of this series, 2,6-dimethylphenyl 2-((3,5-bis(methyloxy)-4-((3-(4-methyl-1-piperazinyl)propyl)oxy)phenyl)amino)-4-pyrimidinyl(2,4-bis(methyloxy)phenyl)carbamate (43) exhibits good activity when evaluated in in vitro assays and in an in vivo model of T cell activation.


Subject(s)
Aminopyridines/chemical synthesis , Anti-Inflammatory Agents/chemical synthesis , Carbamates/chemical synthesis , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/antagonists & inhibitors , Pyrimidines/chemical synthesis , Administration, Oral , Aminopyridines/chemistry , Aminopyridines/pharmacology , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Biological Availability , Carbamates/chemistry , Carbamates/pharmacology , Crystallography, X-Ray , Humans , In Vitro Techniques , Jurkat Cells , Lymphocyte Activation , Lymphocyte Culture Test, Mixed , Mice , Mice, Inbred BALB C , Models, Molecular , Molecular Structure , Pyrimidines/chemistry , Pyrimidines/pharmacology , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , T-Lymphocytes/drug effects , T-Lymphocytes/immunology
13.
J Immunol ; 170(6): 2940-8, 2003 Mar 15.
Article in English | MEDLINE | ID: mdl-12626545

ABSTRACT

The L51S mutation in the D10.G4.1 TCR alpha-chain reduces the affinity of the TCR to its ligand by affecting the interactions among the TCR, the beta-chain of I-A(k), and the bound peptide. We show that this mutation drives the generation of a pool of memory CD44(high)CD62L(neg)CD45RB(neg) CD4 TCR transgenic T cells. Their activation threshold is low, such that they proliferate in response to lower concentrations of agonist peptides than naive L51S CD4 T cells. Unlike effector memory CD4 T cells, however, they lack immediate effector function in response to TCR stimulation. These cells express IL-2R alpha only after culture with specific peptide. Although they can be recovered from lymph nodes, the majority lack the expression of the lymph node homing receptor CCR7. When these cells receive a second TCR stimulation in vitro, they differentiate into potent Th2-like effector cells, producing high levels of IL-4 at doses of agonist peptide too low to stimulate cytokine release from similarly differentiated naive L51S CD4 T cells. Having these properties, the L51S TCR transgenic memory CD4 T cells cannot be classified as either strict central memory or effector memory, but, rather, as a pool of memory T cells containing effector memory precursors.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Immunologic Memory , Stem Cells/immunology , T-Lymphocyte Subsets/immunology , Amino Acid Substitution/genetics , Amino Acid Substitution/immunology , Animals , CD4-Positive T-Lymphocytes/metabolism , Cell Division/genetics , Cell Division/immunology , Cells, Cultured , Conalbumin/immunology , Cytokines/biosynthesis , Dose-Response Relationship, Immunologic , Genes, T-Cell Receptor alpha/genetics , Hyaluronan Receptors/biosynthesis , Immunization, Secondary , Immunologic Memory/genetics , Immunophenotyping , Interphase/genetics , Interphase/immunology , L-Selectin/biosynthesis , Leucine/genetics , Leukocyte Common Antigens/biosynthesis , Lymphocyte Activation/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Peptide Fragments/immunology , Receptors, CCR7 , Receptors, Chemokine/biosynthesis , Receptors, Interleukin-2/biosynthesis , Serine/genetics , Stem Cells/metabolism , T-Lymphocyte Subsets/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...