Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
FEMS Yeast Res ; 232023 01 04.
Article in English | MEDLINE | ID: mdl-37102188

ABSTRACT

Saccharomyces pastorianus, which is responsible for the production of bottom-fermented lager beer, is a hybrid species that arose from the mating of the top-fermenting ale yeast Saccharomyces cerevisiae and the cold-tolerant Saccharomyces eubayanus around the start of the 17th century. Based on detailed analysis of Central European brewing records, we propose that the critical event for the hybridization was the introduction of top-fermenting S. cerevisiae into an environment where S. eubayanus was present, rather than the other way around. Bottom fermentation in parts of Bavaria preceded the proposed hybridization date by a couple of hundred years and we suggest that this was carried out by mixtures of yeasts, which may have included S. eubayanus. A plausible case can be made that the S. cerevisiae parent came either from the Schwarzach wheat brewery or the city of Einbeck, and the formation of S. pastorianus happened in the Munich Hofbräuhaus between 1602 and 1615 when both wheat beer and lager were brewed contemporaneously. We also describe how the distribution of strains from the Munich Spaten brewery, and the development by Hansen and Linder of methods for producing pure starter cultures, facilitated the global spread of the Bavarian S. pastorianus lineages.


Subject(s)
Hybridization, Genetic , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Fermentation , Beer
2.
Nat Ecol Evol ; 3(11): 1562-1575, 2019 11.
Article in English | MEDLINE | ID: mdl-31636425

ABSTRACT

Hybridization between species often leads to non-viable or infertile offspring, yet examples of evolutionarily successful interspecific hybrids have been reported in all kingdoms of life. However, many questions on the ecological circumstances and evolutionary aftermath of interspecific hybridization remain unanswered. In this study, we sequenced and phenotyped a large set of interspecific yeast hybrids isolated from brewing environments to uncover the influence of interspecific hybridization in yeast adaptation and domestication. Our analyses demonstrate that several hybrids between Saccharomyces species originated and diversified in industrial environments by combining key traits of each parental species. Furthermore, posthybridization evolution within each hybrid lineage reflects subspecialization and adaptation to specific beer styles, a process that was accompanied by extensive chimerization between subgenomes. Our results reveal how interspecific hybridization provides an important evolutionary route that allows swift adaptation to novel environments.


Subject(s)
Beer , Saccharomyces , Adaptation, Physiological , Hybridization, Genetic , Saccharomyces cerevisiae
3.
Appl Environ Microbiol ; 76(9): 3044-7, 2010 May.
Article in English | MEDLINE | ID: mdl-20228097

ABSTRACT

Seven different actA subtypes forming two phylogenetic lineages could be distinguished by sequencing the actA gene of Listeria seeligeri isolates from different habitats. Isolates of the two lineages differ in hemolytic as well as phospholipase activities and in the arrangement of the virulence gene cluster. The presence of a serine protease gene resembling orf2110 of L. monocytogenes in some isolates further supports the hypothesis that L. seeligeri is subject to ongoing adaptation to changing environments.


Subject(s)
Food Handling , Food Microbiology , Listeria/classification , Amino Acid Sequence , Food-Processing Industry , Listeria/isolation & purification , Listeria/pathogenicity , Molecular Sequence Data , Multigene Family , Phylogeny , Serine Proteases/genetics , Virulence/genetics , Virulence Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...