Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Glob Chang Biol ; 30(3): e17237, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38488024

ABSTRACT

Scots pine (Pinus sylvestris L.) is a common European tree species, and understanding its acclimation to the rapidly changing climate through physiological, biochemical or structural adjustments is vital for predicting future growth. We investigated a long-term irrigation experiment at a naturally dry forest in Switzerland, comparing Scots pine trees that have been continuously irrigated for 17 years (irrigated) with those for which irrigation was interrupted after 10 years (stop) and non-irrigated trees (control), using tree growth, xylogenesis, wood anatomy, and carbon, oxygen and hydrogen stable isotope measurements in the water, sugars and cellulose of plant tissues. The dendrochronological analyses highlighted three distinct acclimation phases to the treatments: irrigated trees experienced (i) a significant growth increase in the first 4 years of treatment, (ii) high growth rates but with a declining trend in the following 8 years and finally (iii) a regression to pre-irrigation growth rates, suggesting the development of a new growth limitation (i.e. acclimation). The introduction of the stop treatment resulted in further growth reductions to below-control levels during the third phase. Irrigated trees showed longer growth periods and lower tree-ring δ13 C values, reflecting lower stomatal restrictions than control trees. Their strong tree-ring δ18 O and δ2 H (O-H) relationship reflected the hydrological signature similarly to the control. On the contrary, the stop trees had lower growth rates, conservative wood anatomical traits, and a weak O-H relationship, indicating a physiological imbalance. Tree vitality (identified by crown transparency) significantly modulated growth, wood anatomical traits and tree-ring δ13 C, with low-vitality trees of all treatments performing similarly regardless of water availability. We thus provide quantitative indicators for assessing physiological imbalance and tree acclimation after environmental stresses. We also show that tree vitality is crucial in shaping such responses. These findings are fundamental for the early assessment of ecosystem imbalances and decline under climate change.


Subject(s)
Pinus sylvestris , Trees , Ecosystem , Droughts , Isotopes/analysis , Pinus sylvestris/physiology , Acclimatization , Water/physiology , Carbon Isotopes/analysis , Oxygen Isotopes/analysis
2.
J Exp Bot ; 75(10): 3141-3152, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38375924

ABSTRACT

Climate change is predicted to increase atmospheric vapor pressure deficit, exacerbating soil drought, and thus enhancing tree evaporative demand and mortality. Yet, few studies have addressed the longer-term drought acclimation strategy of trees, particularly the importance of morphological versus hydraulic plasticity. Using a long-term (20 years) irrigation experiment in a natural forest, we investigated the acclimation of Scots pine (Pinus sylvestris) morpho-anatomical traits (stomatal anatomy and crown density) and hydraulic traits (leaf water potential, vulnerability to cavitation (Ψ50), specific hydraulic conductivity (Ks), and tree water deficit) to prolonged changes in soil moisture. We found that low water availability reduced twig water potential and increased tree water deficit during the growing season. Still, the trees showed limited adjustments in most branch-level hydraulic traits (Ψ50 and Ks) and needle anatomy. In contrast, trees acclimated to prolonged irrigation by increasing their crown density and hence the canopy water demand. This study demonstrates that despite substantial canopy adjustments, P. sylvestris may be vulnerable to extreme droughts because of limited adjustment potential in its hydraulic system. While sparser canopies reduce water demand, such shifts take decades to occur under chronic water deficits and might not mitigate short-term extreme drought events.


Subject(s)
Acclimatization , Forests , Pinus sylvestris , Water , Pinus sylvestris/physiology , Pinus sylvestris/anatomy & histology , Pinus sylvestris/growth & development , Water/metabolism , Water/physiology , Plant Leaves/physiology , Plant Leaves/anatomy & histology , Agricultural Irrigation , Droughts , Trees/physiology , Trees/anatomy & histology
4.
J Environ Radioact ; 257: 107078, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36423536

ABSTRACT

To investigate the effects of converting forests into vineyards typical to Zarivar Lake watershed, Iran, which occurred mainly in the 1970s and 80s, on soil erosion,137Cs and 210Pbex, being mid-and-long-term soil loss tracers, were applied. In Chernobyl-contaminated areas like those found in some parts of Europe and Asia, the proportion of 137Cs Chernobyl fallout needs to be determined to convert 137Cs inventories into soil erosion rates. To do so, Pu radioisotopes were applied for the first time in Iran. The soil samples were gathered from two adjacent, almost similar hillslopes under natural forest (slope length: 250 m; slope gradient: 20%) and rainfed vineyard (slope length: 200 m; slope gradient: 17%). 137Cs/239+240Pu ratios indicated that 49.8 ± 10.0% of 137Cs originated from Chernobyl. The net soil erosion rates derived by 137Cs, and 210Pbex approaches were 5.0 ± 1.1 and 5.9 ± 2.9 Mg ha-1 yr-1 in the forested hillslope, and 25.9 ± 5.7 and 32.5 ± 14.5 Mg ha-1 yr-1 in the vineyard hillslope, respectively. Both 137Cs and 210Pbex highlighted that deforestation increased soil erosion by around five times. Moreover, the impacts of deforestation on soil physicochemical properties were investigated in surface and subsurface soils. Compared to forested hillslope, soil organic carbon stock in the upper 40 cm of the vineyard reduced by 14 Mg C ha-1 (29%), 8 Mg C ha-1 of which was removed by erosion within 35 years, and the remaining have likely been lost via emissions (6 Mg C ha-1). The vineyard topsoil experienced the most dramatic drops in percolation stability (PS), sealing index, and organic matter by about 55, 51, and 49%, respectively. Among all measured physicochemical properties, PS showed the greatest sensitivity to land-use change. Overall, the present study's findings confirmed that deforestation for agricultural purposes triggered soil loss, deteriorated soil quality and possibly contributed to the reduction of the lake's water quality and climate change.


Subject(s)
Radiation Monitoring , Soil Pollutants, Radioactive , Soil/chemistry , Lead , Soil Erosion , Iran , Conservation of Natural Resources , Carbon , Cesium Radioisotopes/analysis , Soil Pollutants, Radioactive/analysis
5.
Glob Chang Biol ; 28(20): 5928-5944, 2022 10.
Article in English | MEDLINE | ID: mdl-35795901

ABSTRACT

Central Europe has been experiencing unprecedented droughts during the last decades, stressing the decrease in tree water availability. However, the assessment of physiological drought stress is challenging, and feedback between soil and vegetation is often omitted because of scarce belowground data. Here we aimed to model Swiss forests' water availability during the 2015 and 2018 droughts by implementing the mechanistic soil-vegetation-atmosphere-transport (SVAT) model LWF-Brook90 taking advantage of regionalized depth-resolved soil information. We calibrated the model against soil matric potential data measured from 2014 to 2018 at 44 sites along a Swiss climatic and edaphic drought gradient. Swiss forest soils' storage capacity of plant-available water ranged from 53 mm to 341 mm, with a median of 137 ± 42 mm down to the mean potential rooting depth of 1.2 m. Topsoil was the primary water source. However, trees switched to deeper soil water sources during drought. This effect was less pronounced for coniferous trees with a shallower rooting system than for deciduous trees, which resulted in a higher reduction of actual transpiration (transpiration deficit) in coniferous trees. Across Switzerland, forest trees reduced the transpiration by 23% (compared to potential transpiration) in 2015 and 2018, maintaining annual actual transpiration comparable to other years. Together with lower evaporative fluxes, the Swiss forests did not amplify the blue water deficit. The 2018 drought, characterized by a higher and more persistent transpiration deficit than in 2015, triggered widespread early wilting across Swiss forests that was better predicted by the SVAT-derived mean soil matric potential in the rooting zone than by climatic predictors. Such feedback-driven quantification of ecosystem water fluxes in the soil-plant-atmosphere continuum will be crucial to predicting physiological drought stress under future climate extremes.


Subject(s)
Droughts , Soil , Ecosystem , Forests , Plants , Switzerland , Trees/physiology , Water/physiology
6.
Environ Pollut ; 307: 119483, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35595001

ABSTRACT

Taking advantage of the different histories of Hg deposition in Davos Seehornwald in E-Switzerland and Changbai Mountain in NE-China, the influence of atmospheric deposition on Hg soil dynamics in forest soil profiles was investigated. Today, Hg fluxes in bulk precipitation were similar, and soil profiles were generally sinks for atmospherically deposited Hg at both sites. Noticeably, a net release of 2.07 µg Hg m-2 yr-1 from the Bs horizon (Podzol) in Seehornwald was highlighted, where Hg concentration (up to 73.9 µg kg-1) and soil storage (100 mg m-3) peaked. Sequential extraction revealed that organic matter and crystalline Fe and Al hydr (oxide)-associated Hg decreased in the E horizon but increased in the Bs horizon as compared to the Ah horizon, demonstrating the coupling of Hg dynamics with the podzolisation process and accumulation of legacy Hg deposited last century in the Bs horizon. The mor humus in Seehornwald allowed Hg enrichment in the forest floor (182-269 µg kg-1). In Changbai Mountain, the Hg concentrations in the Cambisol surface layer with mull humus were markedly lower (<148 µg kg-1), but with much higher Hg soil storage (54-120 mg m-3) than in the Seehornwald forest floor (18-27 mg m-3). Thus, the vertical distribution pattern of Hg was influenced by humus form and soil type. The concentrations of Hg in soil porewater in Seehornwald (3.4-101 ng L-1) and in runoff of Changbai Mountain (1.26-5.62 ng L-1) were all low. Moreover, the pools of readily extractable Hg in the soils at both sites were all <2% of total Hg. Therefore, the potential of Hg release from the forest soil profile to the adjacent aquatic environment is currently low at both sites.


Subject(s)
Mercury , Soil Pollutants , China , Environmental Monitoring , Forests , Mercury/analysis , Soil/chemistry , Soil Pollutants/analysis , Switzerland , Taiga , Trees
7.
Glob Chang Biol ; 28(9): 3145-3160, 2022 05.
Article in English | MEDLINE | ID: mdl-35124879

ABSTRACT

Summer droughts strongly affect soil organic carbon (SOC) cycling, but net effects on SOC storage are unclear as drought affects both C inputs and outputs from soils. Here, we explored the overlooked role of soil fauna on SOC storage in forests, hypothesizing that soil faunal activity is particularly drought-sensitive, thereby reducing litter incorporation into the mineral soil and, eventually, long-term SOC storage. In a drought-prone pine forest (Switzerland), we performed a large-scale irrigation experiment for 17 years and assessed its impact on vertical SOC distribution and composition. We also examined litter mass loss of dominant tree species using different mesh-size litterbags and determined soil fauna abundance and community composition. The 17-year-long irrigation resulted in a C loss in the organic layers (-1.0 kg C m-2 ) and a comparable C gain in the mineral soil (+0.8 kg C m-2 ) and thus did not affect total SOC stocks. Irrigation increased the mass loss of Quercus pubescens and Viburnum lantana leaf litter, with greater effect sizes when meso- and macrofauna were included (+215%) than when excluded (+44%). The enhanced faunal-mediated litter mass loss was paralleled by a many-fold increase in the abundance of meso- and macrofauna during irrigation. Moreover, Acari and Collembola community composition shifted, with a higher presence of drought-sensitive species in irrigated soils. In comparison, microbial SOC mineralization was less sensitive to soil moisture. Our results suggest that the vertical redistribution of SOC with irrigation was mainly driven by faunal-mediated litter incorporation, together with increased root C inputs. Our study shows that soil fauna is highly sensitive to natural drought, which leads to a reduced C transfer from organic layers to the mineral soil. In the longer term, this potentially affects SOC storage and, therefore, soil fauna plays a key but so far largely overlooked role in shaping SOC responses to drought.


Subject(s)
Pinus , Soil , Carbon , Carbon Cycle , Forests
8.
J Exp Bot ; 73(8): 2576-2588, 2022 04 18.
Article in English | MEDLINE | ID: mdl-35134157

ABSTRACT

Future climate will be characterized by an increase in frequency and duration of drought and warming that exacerbates atmospheric evaporative demand. How trees acclimate to long-term soil moisture changes and whether these long-term changes alter trees' sensitivity to short-term (day to months) variations of vapor pressure deficit (VPD) and soil moisture is largely unknown. Leaf gas exchange measurements were performed within a long-term (17 years) irrigation experiment in a drought-prone Scots pine-dominated forest in one of Switzerland's driest areas on trees in naturally dry (control), irrigated, and 'irrigation-stop' (after 11 years of irrigation) conditions. Seventeen years of irrigation increased photosynthesis (A) and stomatal conductance (gs) and reduced gs sensitivity to increasing VPD and soil drying. Following irrigation-stop, gas exchange decreased only after 3 years. After 5 years, maximum carboxylation (Vcmax) and electron transport (Jmax) rates in irrigation-stop recovered to similar levels as to before the irrigation-stop. These results suggest that long-term release from soil drought reduces the sensitivity to VPD and that atmospheric constraints may play an increasingly important role in combination with soil drought. Moreover, our study indicates that structural adjustments lead to an attenuation of initially strong leaf-level acclimation to strong multiple-year drought.


Subject(s)
Droughts , Trees , Acclimatization , Forests , Photosynthesis , Plant Leaves/chemistry , Soil , Water/analysis
9.
New Phytol ; 233(1): 194-206, 2022 01.
Article in English | MEDLINE | ID: mdl-34610146

ABSTRACT

The intensity and frequency of droughts events are projected to increase in future with expected adverse effects for forests. Thus, information on the dynamics of tree water uptake from different soil layers during and after drought is crucial. We applied an in situ water isotopologue monitoring system to determine the oxygen isotope composition in soil and xylem water of European beech with a 2-h resolution together with measurements of soil water content, transpiration and tree water deficit. Using a Bayesian isotope mixing model, we inferred the relative and absolute contribution of water from four different soil layers to tree water use. Beech took up more than 50% of its water from the uppermost 5 cm soil layer at the beginning of the 2018 drought, but then reduced absolute water uptake from the drying topsoil by 84%. The trees were not able to quantitatively compensate for restricted topsoil water availability by additional uptake from deeper soil layers, which is related to the fine root depth distribution. Absolute water uptake from the topsoil was restored to pre-drought levels within 3 wk after rewetting. These uptake patterns help to explain both the drought sensitivity of beech and its high recovery potential after drought release.


Subject(s)
Fagus , Bayes Theorem , Droughts , Soil , Water
10.
Plant Cell Environ ; 44(11): 3552-3570, 2021 11.
Article in English | MEDLINE | ID: mdl-34462922

ABSTRACT

Monitoring early tree physiological responses to drought is key to understanding progressive impacts of drought on forests and identifying resilient species. We combined drone-based multispectral remote sensing with measurements of tree physiology and environmental parameters over two growing seasons in a 100-y-old Pinus sylvestris forest subject to 17-y of precipitation manipulation. Our goal was to determine if drone-based photochemical reflectance index (PRI) captures tree drought stress responses and whether responses are affected by long-term acclimation. PRI detects changes in xanthophyll cycle pigment dynamics, which reflect increases in photoprotective non-photochemical quenching activity resulting from drought-induced photosynthesis downregulation. Here, PRI of never-irrigated trees was up to 10 times lower (higher stress) than PRI of irrigated trees. Long-term acclimation to experimental treatment, however, influenced the seasonal relationship between PRI and soil water availability. PRI also captured diurnal decreases in photochemical efficiency, driven by vapour pressure deficit. Interestingly, 5 years after irrigation was stopped for a subset of the irrigated trees, a positive legacy effect persisted, with lower stress responses (higher PRI) compared with never-irrigated trees. This study demonstrates the ability of remotely sensed PRI to scale tree physiological responses to an entire forest and the importance of long-term acclimation in determining current drought stress responses.


Subject(s)
Acclimatization , Botany/instrumentation , Droughts , Pinus sylvestris/physiology , Trees/physiology , Unmanned Aerial Devices , Forests , Seasons
11.
Glob Chang Biol ; 27(11): 2491-2506, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33739617

ABSTRACT

Above and belowground compartments in ecosystems are closely coupled on daily to annual timescales. In mature forests, this interlinkage and how it is impacted by drought is still poorly understood. Here, we pulse-labelled 100-year-old trees with 13 CO2 within a 15-year-long irrigation experiment in a naturally dry pine forest to quantify how drought regime affects the transfer and use of assimilates from trees to the rhizosphere and associated microbial communities. It took 4 days until new 13 C-labelled assimilates were allocated to the rhizosphere. One year later, the 13 C signal of the 3-h long pulse labelling was still detectable in stem and soil respiration, which provides evidence that parts of the assimilates are stored in trees before they are used for metabolic processes in the rhizosphere. Irrigation removing the natural water stress reduced the mean C residence time from canopy uptake until soil respiration from 89 to 40 days. Moreover, irrigation increased the amount of assimilates transferred to and respired in the soil within the first 10 days by 370%. A small precipitation event rewetting surface soils altered this pattern rapidly and reduced the effect size to +35%. Microbial biomass incorporated 46 ± 5% and 31 ± 7% of the C used in the rhizosphere in the dry control and irrigation treatment respectively. Mapping the spatial distribution of soil-respired 13 CO2 around the 10 pulse-labelled trees showed that tree rhizospheres extended laterally 2.8 times beyond tree canopies, implying that there is a strong overlap of the rhizosphere among adjacent trees. Irrigation increased the rhizosphere area by 60%, which gives evidence of a long-term acclimation of trees and their rhizosphere to the drought regime. The moisture-sensitive transfer and use of C in the rhizosphere has consequences for C allocation within trees, soil microbial communities and soil carbon storage.


Subject(s)
Droughts , Trees , Carbon , Carbon Dioxide , Carbon Footprint , Ecosystem , Forests , Soil
13.
Sci Rep ; 10(1): 11858, 2020 07 16.
Article in English | MEDLINE | ID: mdl-32678221

ABSTRACT

Global nuclear weapon testing and the Chernobyl accident have released large amounts of radionuclides into the environment. However, to date, the spatial patterns of these fallout sources remain poorly constrained. Fallout radionuclides (137Cs, 239Pu, 240Pu) were measured in soil samples (n = 160) collected at flat, undisturbed grasslands in Western Europe in the framework of a harmonised European soil survey. We show that both fallout sources left a specific radionuclide imprint in European soils. Accordingly, we used plutonium to quantify contributions of global versus Chernobyl fallout to 137Cs found in European soils. Spatial prediction models allowed for a first assessment of the global versus Chernobyl fallout pattern across national boundaries. Understanding the magnitude of these fallout sources is crucial not only to establish a baseline in case of future radionuclide fallout but also to define a baseline for geomorphological reconstructions of soil redistribution due to soil erosion processes.

14.
New Phytol ; 227(4): 1081-1096, 2020 08.
Article in English | MEDLINE | ID: mdl-32259280

ABSTRACT

Tree responses to altered water availability range from immediate (e.g. stomatal regulation) to delayed (e.g. crown size adjustment). The interplay of the different response times and processes, and their effects on long-term whole-tree performance, however, is hardly understood. Here we investigated legacy effects on structures and functions of mature Scots pine in a dry inner-Alpine Swiss valley after stopping an 11-yr lasting irrigation treatment. Measured ecophysiological time series were analysed and interpreted with a system-analytic tree model. We found that the irrigation stop led to a cascade of downregulations of physiological and morphological processes with different response times. Biophysical processes responded within days, whereas needle and shoot lengths, crown transparency, and radial stem growth reached control levels after up to 4 yr only. Modelling suggested that organ and carbon reserve turnover rates play a key role for a tree's responsiveness to environmental changes. Needle turnover rate was found to be most important to accurately model stem growth dynamics. We conclude that leaf area and its adjustment time to new conditions is the main determinant for radial stem growth of pine trees as the transpiring area needs to be supported by a proportional amount of sapwood, despite the growth-inhibiting environmental conditions.


Subject(s)
Pinus sylvestris , Pinus , Droughts , Plant Leaves , Water
15.
Sci Rep ; 10(1): 5334, 2020 03 24.
Article in English | MEDLINE | ID: mdl-32210278

ABSTRACT

Years with high fruit production, known as mast years, are the usual reproduction strategy of European beech. Harsh weather conditions such as frost during flowering can lead to pollination failure in spring. It has been assumed that mast is controlled by flowering, and that after successful pollination, high amounts of fruits and seeds would be produced. However, the extremely hot and dry European summer of 2018 showed that despite successful pollination, beechnuts did not develop or were only abundant in a few forest stands. An in-depth analysis of three forest sites of European beech from the Swiss Long-Term Forest Ecosystem Research Programme over the last 15-19 years revealed for the first time that extreme summer heat and drought can act as an "environmental veto", leading to early fruit abortion. Within the forest stands in years with fruit abortion, summer mean temperatures were 1.5 °C higher and precipitation sums were 45% lower than the long-term average. Extreme summer heat and drought, together with frost during flowering, are therefore disrupting events of the assumed biennial fruiting cycle in European beech.


Subject(s)
Extreme Heat/adverse effects , Fagus/metabolism , Fruit/growth & development , Climate Change , Droughts , Ecosystem , Forests , Fruit/metabolism , Hot Temperature/adverse effects , Pollination , Seasons , Temperature , Trees , Weather
16.
MethodsX ; 6: 219-229, 2019.
Article in English | MEDLINE | ID: mdl-30766802

ABSTRACT

The slope length and slope steepness factor (LS-factor) is one of five factors of the Universal Soil Loss Equation (USLE) and its revised version (RUSLE) describing the influence of topography on soil erosion risk. The LS-factor was originally developed for slopes less than 50% inclination and has not been tested for steeper slopes. To overcome this limitation, we adapted both factors slope length L and slope steepness S for conditions experimentally observed at Swiss alpine grasslands. For the new L-factor (Lalpine), a maximal flow path threshold, corresponding to 100 m, was implemented to take into account short runoff flow paths and rapid infiltration that has been observed in our experiments. For the S-factor, a fitted quadratic polynomial function (Salpine) has been established, compiling the most extensive empirical studies. As a model evaluation, uncertainty intervals are presented for this modified S-factor. We observed that uncertainty increases with slope gradient. In summary, the proposed modification of the LS-factor to alpine environments enables an improved prediction of soil erosion risk including steep slopes. •Empirical experiments (rainfall simulation, sediment measurements) were conducted on Swiss alpine grasslands to assess the maximal flow length and slope steepness factor (S-factor).•Flow accumulation is limited to a maximal flow threshold (100 m) at which overland runoff is realistic in alpine grassland.•Slope steepness factor is modified by a fitted S-factor equation from existing empirical S-factor functions.

17.
Data Brief ; 20: 1992-1998, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30306103

ABSTRACT

So far, neither a grassland map, temporal analysis of the conversion of permanent grassland (PG) to other land uses nor the differentiation of permanent and temporal grassland exists for Switzerland. For the first time in Switzerland, we present a Swiss national grassland map for the year 2015 capturing the extent of both, permanent and temporal grasslands (here called grasslands) by intersecting the information of three datasets. We blended the high temporal resolution Climate Change Initiate (CCI) Land Cover of 2015 (processed by the European Space Agency (ESA)), with the high spatial resolution Swiss topographical landscape model "SwissTLM3D" and the landscape model "vector25" both provided by Swisstopo. The final data presents the spatial patterns and the national extent of Swiss grasslands. Furthermore, the recently published (April 2017) CCI Land Cover dataset allow extracting the extent of grasslands for 24 years (1992-2015) with a coarse spatial resolution of 300 m. We used the time series data of the grassland extent to produce annual PG maps from 1996 to 2015. That data enables the identification of the development of grassland extent over two decades. The Swiss national grassland map is used for investigating the spatio-temporal patterns of the soil erosion risk of Swiss grasslands (see Mapping spatio-temporal dynamics of the cover and management factor (C-factor) for grasslands in Switzerland, doi:10.1016/j.rse.2018.04.008 (Schmidt el al., 2018)).

18.
J Environ Radioact ; 182: 85-94, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29202373

ABSTRACT

An important process in the production of drinking water is the recharge of the withdrawn ground water with river water at protected recharge fields. While it is well known that undisturbed soils are efficiently filtering and adsorbing radionuclides, the goal of this study was to investigate their behaviour in an artificial recharge site that may receive rapid and additional input of radionuclides by river water (particularly when draining a catchment including nuclear power plants (NPP)). Soil profiles of recharge sites were drilled and analysed for radionuclides, specifically radiocesium (137Cs), radiostrontium (90Sr) and plutonium (239+240Pu). The distribution of the analysed radionuclides were compared with an uncultivated reference soil outside the recharge site. The main activity of 137Cs was located in the top soil (4.5-7.5 cm) and reached down to a depth of 84 cm and 48 cm for the recharge and the reference site, respectively. The found activities of 239+240Pu originate from the global fallout after 1950. 239+240Pu appeared to be strongly adsorbed onto soil particles. The shape of the depth profile was similar to 137Cs, but also similar between the recharge and the reference site. In contrast, 90Sr showed a uniform distribution over the entire depth of the recharge and reference profiles indicating that 90Sr already entered the gravel zone and the ground water. Elevated inventories of the radionuclides were observed for the recharge site. The soil of the recharge field exhibited a threefold higher activity of 137Cs compared to the reference soil. Also for 239+240Pu higher inventories where observed for the recharge sites (40%). 90Sr behaved differently, showing similar inventories between reference and recharge site. We estimate that 75-89% of the total inventory of 137Cs in the soil at the recharge site (7.000 Bq/m2) originated from the fallout of the Chernobyl accident and from emissions of Swiss NPPs. This estimate is based on the actual activity ratio of 137Cs/239+240Pu of 22 for global fallout. The investigations identified radiostrontium as potential threat to the ground water.


Subject(s)
Cesium Radioisotopes/analysis , Plutonium/analysis , Radiation Monitoring , Soil Pollutants, Radioactive/analysis , Strontium Radioisotopes/analysis , Nuclear Power Plants , Switzerland
19.
Nat Commun ; 8(1): 2013, 2017 12 08.
Article in English | MEDLINE | ID: mdl-29222506

ABSTRACT

Human activity and related land use change are the primary cause of accelerated soil erosion, which has substantial implications for nutrient and carbon cycling, land productivity and in turn, worldwide socio-economic conditions. Here we present an unprecedentedly high resolution (250 × 250 m) global potential soil erosion model, using a combination of remote sensing, GIS modelling and census data. We challenge the previous annual soil erosion reference values as our estimate, of 35.9 Pg yr-1 of soil eroded in 2012, is at least two times lower. Moreover, we estimate the spatial and temporal effects of land use change between 2001 and 2012 and the potential offset of the global application of conservation practices. Our findings indicate a potential overall increase in global soil erosion driven by cropland expansion. The greatest increases are predicted to occur in Sub-Saharan Africa, South America and Southeast Asia. The least developed economies have been found to experience the highest estimates of soil erosion rates.

20.
J Hydrol (Amst) ; 548: 251-262, 2017 May.
Article in English | MEDLINE | ID: mdl-28649140

ABSTRACT

The policy requests to develop trends in soil erosion changes can be responded developing modelling scenarios of the two most dynamic factors in soil erosion, i.e. rainfall erosivity and land cover change. The recently developed Rainfall Erosivity Database at European Scale (REDES) and a statistical approach used to spatially interpolate rainfall erosivity data have the potential to become useful knowledge to predict future rainfall erosivity based on climate scenarios. The use of a thorough statistical modelling approach (Gaussian Process Regression), with the selection of the most appropriate covariates (monthly precipitation, temperature datasets and bioclimatic layers), allowed to predict the rainfall erosivity based on climate change scenarios. The mean rainfall erosivity for the European Union and Switzerland is projected to be 857 MJ mm ha-1 h-1 yr-1 till 2050 showing a relative increase of 18% compared to baseline data (2010). The changes are heterogeneous in the European continent depending on the future projections of most erosive months (hot period: April-September). The output results report a pan-European projection of future rainfall erosivity taking into account the uncertainties of the climatic models.

SELECTION OF CITATIONS
SEARCH DETAIL
...