Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Model ; 23(2): 60, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28181015

ABSTRACT

Calcium complexes with bidentate carbonyl ligands are important in biological systems, medicine and industry, where the concentration of Ca2+ is controlled using chelating ligands. The exchange of two water molecules of [Ca(H2O)6]2+ for one bidentate monosubstituted and homo disubstituted dicarbonyl ligand was investigated using the B3LYP/6-311++G(d,p) method. The ligand substituents NH2, OCH3, OH, CH3, H, F, Cl, CN and NO2 are functional groups with distinct electron-donating and -withdrawing effects that bond directly to the sp2 C atom of the carbonyl group. The geometry, charge and energy characteristics of the complexes were analyzed to help understand the effects of substituents, spacer length and chelation. Coordination strength was quantified in terms of the enthalpy and free energy of the exchange reaction. The most negative enthalpies were calculated for the coordination of bidentate ligands containing three to five methylene group spacers between carbonyls. The chelate effect contribution was analyzed based on the thermochemistry. The electronic character of the substituent modulates the strength of binding to the metal cation, as ligands containing electron-donor substituents coordinate stronger than those with electron-acceptor substituents. This is reflected in the geometric (bond length and chelating angle), electronic (atomic charges) and energetic (components of the total interacting energy) characteristics of the complexes. Energy decomposition analysis (EDA)-an approach for partitioning of the energy into its chemical origins-shows that the electrostatic component of the coordination is predominant, and yields relevant contribution of the covalent term, especially for the electron-withdrawing substituted ligands. The chelate effect of the bidentate ligands was noticeable when compared with substitution by two monodentate ligands. Graphical abstract The affinity of 18 bidentate carbonyl ligands toward the [Ca(H2O)4]2+ cation is evaluated in terms of energetic, geometric and electronic parameters of the isolated ligands and the substituted aqua complexes. The electronic effects-inductive and mesomeric-intrinsic to the molecular structure of each ligand are found to modulate the strength of the metal-ligand interaction. The effects of polysubstitution, chelation and the length of the alkyl spacers between the anchor points of the ligand are also analyzed.

2.
Antimicrob Agents Chemother ; 51(8): 2905-10, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17526757

ABSTRACT

The antiinflammatory cytokine transforming growth factor beta (TGF-beta) plays an important role in Chagas disease, a parasitic infection caused by the protozoan Trypanosoma cruzi. In the present study, we show that SB-431542, an inhibitor of the TGF-beta type I receptor (ALK5), inhibits T. cruzi-induced activation of the TGF-beta pathway in epithelial cells and in cardiomyocytes. Further, we demonstrate that addition of SB-431542 greatly reduces cardiomyocyte invasion by T. cruzi. Finally, SB-431542 treatment significantly reduces the number of parasites per infected cell and trypomastigote differentiation and release. Taken together, these data further confirm the major role of the TGF-beta signaling pathway in both T. cruzi infection and T. cruzi cell cycle completion. Our present data demonstrate that small inhibitors of the TGF-beta signaling pathway might be potential pharmacological tools for the treatment of Chagas disease.


Subject(s)
Benzamides/pharmacology , Dioxoles/pharmacology , Myocytes, Cardiac/parasitology , Receptors, Transforming Growth Factor beta/antagonists & inhibitors , Transforming Growth Factor beta/drug effects , Trypanosoma cruzi/pathogenicity , Animals , Apoptosis , Cell Cycle/drug effects , Cells, Cultured , Chagas Disease , Chlorocebus aethiops , Epithelial Cells/parasitology , Mice , Signal Transduction/drug effects , Transforming Growth Factor beta/metabolism , Trypanosoma cruzi/cytology , Trypanosoma cruzi/drug effects , Trypanosoma cruzi/growth & development , Vero Cells
3.
J Histochem Cytochem ; 53(1): 35-44, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15637336

ABSTRACT

Leishmania are protozoa that invade mononuclear phagocytes with the involvement of different ligand-receptor systems, including mannose receptors. Until now, scant data are available concerning the mechanisms that govern the infection of Leishmania in other host cell types such as fibroblasts. Our aim was to analyze the expression of mannose receptors in primary cultures of skin fibroblasts (SF) further characterizing their role during the invasion of promastigotes of Leishmania (L.) amazonensis. Both fluorescent, light, and electron microscopy assays revealed that SF have mannose receptors since they bound and internalized mannosylated ligands in addition to being positively labeled by fuc-BSA-FITC probes. d-mannose competition assays revealed the participation of mannose receptors during the parasite association with SF presenting upregulated receptor expression during the initial steps of the infection. After longer periods of Leishmania:fibroblasts contact, the modulation noted in the host mannose receptors was reverted concomitantly to the infection control, suggesting that the parasites were required for the alteration maintenance and providing evidences that the SF may display microbicidal mechanisms to control the Leishmania infection.


Subject(s)
Fibroblasts/metabolism , Lectins, C-Type/biosynthesis , Leishmania/physiology , Mannose-Binding Lectins/biosynthesis , Receptors, Cell Surface/biosynthesis , Skin/metabolism , Animals , Cells, Cultured , Endocytosis , Fibroblasts/parasitology , Fibroblasts/ultrastructure , Leishmania/pathogenicity , Mannose Receptor , Mice , Skin/cytology , Skin/parasitology , Time Factors , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...