Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
J Phys Condens Matter ; 36(21)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38295434

ABSTRACT

We advertise rare-earth intermetallics with high-symmetry crystal structures and competing interactions as a possible materials platform hosting spin structures with non-trivial topological properties. Focusing on the series of cubicRCu compounds, whereR= Ho, Er, Tm, the bulk properties of these systems display exceptionally rich magnetic phase diagrams hosting an abundance of different phase pockets characteristic of antiferromagnetic order in the presence of delicately balanced interactions. The electrical transport properties exhibit large anomalous contributions suggestive of topologically non-trivial winding in the electronic and magnetic structures. Neutron diffraction identifies spontaneous long-range magnetic order in terms of commensurate and incommensurate variations of(ππ0)antiferromagnetism with the possibility for various multi-kconfigurations. Motivated by general trends in these materials, we discuss the possible existence of topologically non-trivial winding in real and reciprocal space in the class ofRCu compounds including antiferromagnetic skyrmion lattices. Putatively bringing together different limits of non-trivial topological winding in the same material, the combination of properties inRCu systems promises access to advanced functionalities.

2.
Rev Sci Instrum ; 87(10): 105108, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27802694

ABSTRACT

A new polarized neutron single crystal diffractometer POLI (Polarization Investigator) has been developed at the Maier-Leibnitz Zentrum, Garching, Germany. After reviewing existing devices, spherical neutron polarimetry has been implemented on POLI as a main experimental technique using a third-generation cryogenic polarization analysis device (Cryopad) built in cooperation between RWTH University and Institut Laue-Langevin. In this report we describe the realization and present the performance of the new Cryopad on POLI. Some improvements in the construction as well as details regarding calibrations of Cryopad and its practical use are discussed. The reliable operation of the new Cryopad on POLI is also demonstrated.

3.
Rev Sci Instrum ; 87(6): 063909, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27370472

ABSTRACT

We report the design of a radio-frequency induction-heated rod casting furnace that permits the preparation of polycrystalline ingots of intermetallic compounds under ultra-high vacuum compatible conditions. The central part of the system is a bespoke water-cooled Hukin crucible supporting a casting mold. Depending on the choice of the mold, typical rods have a diameter between 6 mm and 10 mm and a length up to 90 mm, suitable for single-crystal growth by means of float-zoning. The setup is all-metal sealed and may be baked out. We find that the resulting ultra-high vacuum represents an important precondition for processing compounds with high vapor pressures under a high-purity argon atmosphere up to 3 bars. Using the rod casting furnace, we succeeded to prepare large high-quality single crystals of two half-Heusler compounds, namely, the itinerant antiferromagnet CuMnSb and the half-metallic ferromagnet NiMnSb.

4.
Phys Rev Lett ; 108(25): 257204, 2012 Jun 22.
Article in English | MEDLINE | ID: mdl-23004650

ABSTRACT

We report vibrating coil magnetometry of the spin-ice system Ho(2)Ti(2)O(7) down to ~0.04 K for magnetic fields up to 5 T applied parallel to the [111] axis. History-dependent behavior emerges below T(0)(*) ~ 0.6 K near zero magnetic field, in common with other spin-ice compounds. In large magnetic fields, we observe a magnetization plateau followed by a hysteretic metamagnetic transition. The temperature dependence of the coercive fields as well as the susceptibility calculated from the magnetization identify the metamagnetic transition as a line of first order transitions terminating in a critical end point at T(m)(*) 0.37 ~/= K, B(m) ~/= 1.5 T. The metamagnetic transition in Ho(2)Ti(2)O(7) is strongly reminiscent of that observed in Dy(2)Ti(2)O(7), suggestive of a general feature of the spin ices.

5.
J Phys Condens Matter ; 22(23): 235903, 2010 Jun 16.
Article in English | MEDLINE | ID: mdl-21393772

ABSTRACT

Below its ordering temperature at 105 K, perovskite-type SrTiO(3) exhibits a tetragonal phase with three different structural domains that are strongly influenced by the application of uniaxial mechanical stresses and electric fields. A careful neutron diffraction study of superlattice reflections provides full quantitative information about the varying domain distributions under external loads as a function of temperature. It is shown that electric field and uniaxial stress exhibit competitive effects and the simultaneous application leads to a complex redistribution behaviour of the tetragonal domains. The results are discussed in the context of the formation of a field induced ferroelectric phase at low temperatures. The experimental findings demonstrate that its polarization is always perpendicular to the tetragonal axis and the polar phase has orthorhombic symmetry.

SELECTION OF CITATIONS
SEARCH DETAIL