Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
1.
Plant Cell ; 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38382089

ABSTRACT

Photosystem I (PSI) forms a large macromolecular complex of ∼580 kDa that resides in the thylakoid membrane and mediates photosynthetic electron transfer. PSI is composed of eighteen protein subunits and nearly two hundred co-factors. The assembly of the complex in thylakoid membranes requires high spatial and temporal coordination, and is critically dependent on a sophisticated assembly machinery. Here, we report and characterize CO-EXPRESSED WITH PSI ASSEMBLY1 (CEPA1), a PSI assembly factor in Arabidopsis (Arabidopsis thaliana). The CEPA1 gene was identified bioinformatically as being co-expressed with known PSI assembly factors. Disruption of the CEPA1 gene leads to a pale phenotype and retarded plant development but does not entirely abolish photoautotrophy. Biophysical and biochemical analyses revealed that the phenotype is caused by a specific defect in PSI accumulation. We further show that CEPA1 acts at the post-translational level and co-localizes with PSI in non-appressed thylakoid membranes. In native gels, CEPA1 co-migrates with thylakoid protein complexes, including putative PSI assembly intermediates. Finally, protein-protein interaction assays suggest cooperation of CEPA1 with the PSI assembly factor PHOTOSYSTEM I ASSEMBLY3 PSA3. Together, our data support an important but non-essential role of CEPA1 in PSI assembly.

2.
Nat Plants ; 9(11): 1818-1831, 2023 11.
Article in English | MEDLINE | ID: mdl-37814021

ABSTRACT

Fusion proteins derived from transcription activator-like effectors (TALEs) have emerged as genome editing tools for mitochondria. TALE nucleases (TALENs) have been applied to delete chimaeric reading frames and duplicated (redundant) genes but produced complex genomic rearrangements due to the absence of non-homologous end-joining. Here we report the targeted deletion of a conserved mitochondrial gene, nad9, encoding a subunit of respiratory complex I. By generating a large number of TALEN-mediated mitochondrial deletion lines, we isolated, in addition to mutants with rearranged genomes, homochondriomic mutants harbouring clean nad9 deletions. Characterization of the knockout plants revealed impaired complex I biogenesis, male sterility and defects in leaf and flower development. We show that these defects can be restored by expressing a functional Nad9 protein from the nuclear genome, thus creating a synthetic cytoplasmic male sterility system. Our data (1) demonstrate the feasibility of using genome editing to study mitochondrial gene functions by reverse genetics, (2) highlight the role of complex I in plant development and (3) provide proof-of-concept for the construction of synthetic cytoplasmic male sterility systems for hybrid breeding by genome editing.


Subject(s)
Gene Editing , Genes, Mitochondrial , Plant Breeding , Plants , Mitochondria/genetics , Genome, Plant
3.
Nat Plants ; 9(6): 987-1000, 2023 06.
Article in English | MEDLINE | ID: mdl-37156858

ABSTRACT

In plant cells, translation occurs in three compartments: the cytosol, the plastids and the mitochondria. While the structures of the (prokaryotic-type) ribosomes in plastids and mitochondria are well characterized, high-resolution structures of the eukaryotic 80S ribosomes in the cytosol have been lacking. Here the structure of translating tobacco (Nicotiana tabacum) 80S ribosomes was solved by cryo-electron microscopy with a global resolution of 2.2 Å. The ribosome structure includes two tRNAs, decoded mRNA and the nascent peptide chain, thus providing insights into the molecular underpinnings of the cytosolic translation process in plants. The map displays conserved and plant-specific rRNA modifications and the positions of numerous ionic cofactors, and it uncovers the role of monovalent ions in the decoding centre. The model of the plant 80S ribosome enables broad phylogenetic comparisons that reveal commonalities and differences in the ribosomes of plants and those of other eukaryotes, thus putting our knowledge about eukaryotic translation on a firmer footing.


Subject(s)
RNA, Ribosomal , Ribosomes , Cytosol , RNA, Ribosomal/chemistry , Cryoelectron Microscopy , Phylogeny , Models, Molecular , Ribosomes/chemistry , Plants/genetics , Nicotiana/genetics
4.
Plant Physiol ; 191(4): 2170-2184, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36695030

ABSTRACT

In eukaryotes, mitochondrial ATP is mainly produced by the oxidative phosphorylation (OXPHOS) system, which is composed of 5 multiprotein complexes (complexes I-V). Analyses of the OXPHOS system by native gel electrophoresis have revealed an organization of OXPHOS complexes into supercomplexes, but their roles and assembly pathways remain unclear. In this study, we characterized an atypical mitochondrial ferredoxin (mitochondrial ferredoxin-like, mFDX-like). This protein was previously found to be part of the bridge domain linking the matrix and membrane arms of the complex I. Phylogenetic analysis suggested that the Arabidopsis (Arabidopsis thaliana) mFDX-like evolved from classical mitochondrial ferredoxins (mFDXs) but lost one of the cysteines required for the coordination of the iron-sulfur (Fe-S) cluster, supposedly essential for the electron transfer function of FDXs. Accordingly, our biochemical study showed that AtmFDX-like does not bind an Fe-S cluster and is therefore unlikely to be involved in electron transfer reactions. To study the function of mFDX-like, we created deletion lines in Arabidopsis using a CRISPR/Cas9-based strategy. These lines did not show any abnormal phenotype under standard growth conditions. However, the characterization of the OXPHOS system demonstrated that mFDX-like is important for the assembly of complex I and essential for the formation of complex I-containing supercomplexes. We propose that mFDX-like and the bridge domain are required for the correct conformation of the membrane arm of complex I that is essential for the association of complex I with complex III2 to form supercomplexes.


Subject(s)
Arabidopsis , Ferredoxins , Ferredoxins/genetics , Ferredoxins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Phylogeny , Electron Transport Complex I/genetics , Electron Transport Complex I/metabolism , Mitochondria/metabolism
5.
Proc Natl Acad Sci U S A ; 119(38): e2122969119, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36095209

ABSTRACT

Energy is essential for all cellular functions in a living organism. How cells coordinate their physiological processes with energy status and availability is thus an important question. The turnover of actin cytoskeleton between its monomeric and filamentous forms is a major energy drain in eukaryotic cells. However, how actin dynamics are regulated by ATP levels remain largely unknown in plant cells. Here, we observed that seedlings with impaired functions of target of rapamycin complex 1 (TORC1), either by mutation of the key component, RAPTOR1B, or inhibition of TOR activity by specific inhibitors, displayed reduced sensitivity to actin cytoskeleton disruptors compared to their controls. Consistently, actin filament dynamics, but not organization, were suppressed in TORC1-impaired cells. Subcellular localization analysis and quantification of ATP concentration demonstrated that RAPTOR1B localized at cytoplasm and mitochondria and that ATP levels were significantly reduced in TORC1-impaired plants. Further pharmacologic experiments showed that the inhibition of mitochondrial functions led to phenotypes mimicking those observed in raptor1b mutants at the level of both plant growth and actin dynamics. Exogenous feeding of adenine could partially restore ATP levels and actin dynamics in TORC1-deficient plants. Thus, these data support an important role for TORC1 in coordinating ATP homeostasis and actin dynamics in plant cells.


Subject(s)
Actin Cytoskeleton , Adenosine Triphosphate , Arabidopsis Proteins , Arabidopsis , Mechanistic Target of Rapamycin Complex 1 , Phosphatidylinositol 3-Kinases , Actin Cytoskeleton/metabolism , Actins , Adenosine Triphosphate/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/physiology , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/physiology
6.
New Phytol ; 235(4): 1315-1329, 2022 08.
Article in English | MEDLINE | ID: mdl-35588181

ABSTRACT

One of the key functions of mitochondria is the production of ATP to support cellular metabolism and growth. The last step of mitochondrial ATP synthesis is performed by the oxidative phosphorylation (OXPHOS) system, an ensemble of protein complexes embedded in the inner mitochondrial membrane. In the last 25 yr, many structures of OXPHOS complexes and supercomplexes have been resolved in yeast, mammals, and bacteria. However, structures of plant OXPHOS enzymes only became available very recently. In this review, we highlight the plant-specific features revealed by the recent structures and discuss how they advance our understanding of the function and assembly of plant OXPHOS complexes. We also propose new hypotheses to be tested and discuss older findings to be re-evaluated. Further biochemical and structural work on the plant OXPHOS system will lead to a deeper understanding of plant respiration and its regulation, with significant agricultural, environmental, and societal implications.


Subject(s)
Mitochondrial Membranes , Oxidative Phosphorylation , Adenosine Triphosphate/metabolism , Animals , Mammals , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Saccharomyces cerevisiae/metabolism
7.
Nat Plants ; 8(3): 245-256, 2022 03.
Article in English | MEDLINE | ID: mdl-35301443

ABSTRACT

The development of technologies for the genetic manipulation of mitochondrial genomes remains a major challenge. Here we report a method for the targeted introduction of mutations into plant mitochondrial DNA (mtDNA) that we refer to as transcription activator-like effector nuclease (TALEN) gene-drive mutagenesis (GDM), or TALEN-GDM. The method combines TALEN-induced site-specific cleavage of the mtDNA with selection for mutations that confer resistance to the TALEN cut. Applying TALEN-GDM to the tobacco mitochondrial nad9 gene, we isolated a large set of mutants carrying single amino acid substitutions in the Nad9 protein. The mutants could be purified to homochondriomy and stably inherited their edited mtDNA in the expected maternal fashion. TALEN-GDM induces both transitions and transversions, and can access most nucleotide positions within the TALEN binding site. Our work provides an efficient method for targeted mitochondrial genome editing that produces genetically stable, homochondriomic and fertile plants with specific point mutations in their mtDNA.


Subject(s)
Genome, Mitochondrial , DNA, Plant/genetics , Genome, Plant , Mutagenesis , Point Mutation
8.
Biochim Biophys Acta Bioenerg ; 1862(7): 148425, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33785316

ABSTRACT

The mitochondrial ATP synthase is producing most of the energy required to support eucaryotic life. It is located in the mitochondrial inner-membrane and couples the dissipation of the proton gradient produced by the electron transfer chain with ATP production. It is composed of two domains, the F1 domain located in the matrix and the FO domain embedded in the inner membrane. The mitochondrial ATP synthase belongs to the F-type ATP synthase family together with bacterial and chloroplastic enzymes. The composition of the mitochondrial ATP synthase is well conserved across species, except in plants where several subunits found in opisthokonts were not identified and additional, plant-specific, subunits were found. The assembly of the F-type ATP synthase has been extensively studied in bacteria, yeast and mammals. The overall assembly pattern is conserved but species-specific steps have been identified. In plant, little is known about the assembly of the mitochondrial ATP synthase. We have mined our previously published complexome profiling dataset in order to identity assembly steps of the ATP synthase in the reference plant Arabidopsis thaliana. Several assembly intermediates were identified and we propose a model for the assembly pathway of the ATP synthase of plant mitochondria. In addition, combining complexome profiling with homology searches, we found that the previously described plant-specific subunits are actually present in other organisms. Overall, our work show that the subunit composition and the assembly pathway of the plant mitochondria ATP synthase are mostly conserved with other mitochondrial enzymes.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Proton-Translocating ATPases/metabolism , Proteome/analysis
9.
Plant Cell ; 33(5): 1682-1705, 2021 07 02.
Article in English | MEDLINE | ID: mdl-33561268

ABSTRACT

Translational recoding, also known as ribosomal frameshifting, is a process that causes ribosome slippage along the messenger RNA, thereby changing the amino acid sequence of the synthesized protein. Whether the chloroplast employs recoding is unknown. I-iota, a plastome mutant of Oenothera (evening primrose), carries a single adenine insertion in an oligoA stretch [11A] of the atpB coding region (encoding the ß-subunit of the ATP synthase). The mutation is expected to cause synthesis of a truncated, nonfunctional protein. We report that a full-length AtpB protein is detectable in I-iota leaves, suggesting operation of a recoding mechanism. To characterize the phenomenon, we generated transplastomic tobacco lines in which the atpB reading frame was altered by insertions or deletions in the oligoA motif. We observed that insertion of two adenines was more efficiently corrected than insertion of a single adenine, or deletion of one or two adenines. We further show that homopolymeric composition of the oligoA stretch is essential for recoding, as an additional replacement of AAA lysine codon by AAG resulted in an albino phenotype. Our work provides evidence for the operation of translational recoding in chloroplasts. Recoding enables correction of frameshift mutations and can restore photoautotrophic growth in the presence of a mutation that otherwise would be lethal.


Subject(s)
Chloroplasts/metabolism , Frameshift Mutation/genetics , Genes, Plant , Nicotiana/genetics , Oenothera/genetics , Plant Proteins/genetics , Protein Biosynthesis/genetics , Amino Acid Sequence , Base Sequence , Chloroplasts/ultrastructure , DNA, Complementary/genetics , Escherichia coli/metabolism , Genotype , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Mutation/genetics , Peptides/chemistry , Peptides/metabolism , Phenotype , Photosynthesis , Plant Proteins/chemistry , Plant Proteins/metabolism , Plants, Genetically Modified , Reproduction
10.
Mitochondrion ; 52: 173-182, 2020 05.
Article in English | MEDLINE | ID: mdl-32224234

ABSTRACT

Plant mitochondrial genomes are renowned for their structural complexity, extreme variation in size and mutation rates, and ability to incorporate foreign DNA. Parasitic flowering plants are no exception, and the close association between parasite and host may even enhance the likelihood of horizontal gene transfer (HGT) between them. Recent studies on mistletoes (Viscum) have revealed that these parasites have lost an exceptional number of mitochondrial genes, including all complex I genes of the respiratory chain. At the same time, an altered respiratory pathway has been demonstrated. Here we review the current understanding of mitochondrial evolution in parasitic plants with a special emphasis on HGT to and from parasite mitochondrial genomes, as well as the uniquely altered mitochondria in Viscum and related plants.


Subject(s)
Genome, Mitochondrial , Magnoliopsida/genetics , Mitochondria/genetics , Evolution, Molecular , Gene Transfer, Horizontal , Genetic Variation , Phylogeny
11.
Plant J ; 101(2): 420-441, 2020 01.
Article in English | MEDLINE | ID: mdl-31520498

ABSTRACT

Mitochondria host vital cellular functions, including oxidative phosphorylation and co-factor biosynthesis, which are reflected in their proteome. At the cellular level plant mitochondria are organized into hundreds of discrete functional entities, which undergo dynamic fission and fusion. It is the individual organelle that operates in the living cell, yet biochemical and physiological assessments have exclusively focused on the characteristics of large populations of mitochondria. Here, we explore the protein composition of an individual average plant mitochondrion to deduce principles of functional and structural organisation. We perform proteomics on purified mitochondria from cultured heterotrophic Arabidopsis cells with intensity-based absolute quantification and scale the dataset to the single organelle based on criteria that are justified by experimental evidence and theoretical considerations. We estimate that a total of 1.4 million protein molecules make up a single Arabidopsis mitochondrion on average. Copy numbers of the individual proteins span five orders of magnitude, ranging from >40 000 for Voltage-Dependent Anion Channel 1 to sub-stoichiometric copy numbers, i.e. less than a single copy per single mitochondrion, for several pentatricopeptide repeat proteins that modify mitochondrial transcripts. For our analysis, we consider the physical and chemical constraints of the single organelle and discuss prominent features of mitochondrial architecture, protein biogenesis, oxidative phosphorylation, metabolism, antioxidant defence, genome maintenance, gene expression, and dynamics. While assessing the limitations of our considerations, we exemplify how our understanding of biochemical function and structural organization of plant mitochondria can be connected in order to obtain global and specific insights into how organelles work.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Mitochondria/metabolism , Organelles/metabolism , Proteomics , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Databases, Protein , Mitochondria/genetics , Organelle Biogenesis , Organelles/genetics , Proteome/metabolism
12.
Plant Cell Physiol ; 60(11): 2369-2381, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31318380

ABSTRACT

The alternative oxidase (AOX) constitutes a nonphosphorylating pathway of electron transport in the mitochondrial respiratory chain that provides flexibility to energy and carbon primary metabolism. Its activity is regulated in vitro by the mitochondrial thioredoxin (TRX) system which reduces conserved cysteines residues of AOX. However, in vivo evidence for redox regulation of the AOX activity is still scarce. In the present study, the redox state, protein levels and in vivo activity of the AOX in parallel to photosynthetic parameters were determined in Arabidopsis knockout mutants lacking mitochondrial trxo1 under moderate (ML) and high light (HL) conditions, known to induce in vivo AOX activity. In addition, 13C- and 14C-labeling experiments together with metabolite profiling were performed to better understand the metabolic coordination between energy and carbon metabolism in the trxo1 mutants. Our results show that the in vivo AOX activity is higher in the trxo1 mutants at ML while the AOX redox state is apparently unaltered. These results suggest that mitochondrial thiol redox systems are responsible for maintaining AOX in its reduced form rather than regulating its activity in vivo. Moreover, the negative regulation of the tricarboxylic acid cycle by the TRX system is coordinated with the increased input of electrons into the AOX pathway. Under HL conditions, while AOX and photosynthesis displayed similar patterns in the mutants, photorespiration is restricted at the level of glycine decarboxylation most likely as a consequence of redox imbalance.


Subject(s)
Arabidopsis/metabolism , Carbon/metabolism , Mitochondrial Proteins/metabolism , Oxidoreductases/metabolism , Plant Proteins/metabolism , Arabidopsis/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Oxidation-Reduction , Oxidoreductases/genetics , Photosynthesis/genetics , Photosynthesis/physiology , Plant Proteins/genetics
13.
Plant Physiol ; 180(4): 2034-2048, 2019 08.
Article in English | MEDLINE | ID: mdl-31138622

ABSTRACT

Retrograde signals emanate from the DNA-containing cell organelles (plastids and mitochondria) and control the expression of a large number of nuclear genes in response to environmental and developmental cues. Previous studies on retrograde signaling have mainly analyzed the regulation of nuclear gene expression at the transcript level. To determine the contribution of translational and posttranslational regulation to plastid retrograde signaling, we combined label-free proteomics with transcriptomic analysis of Arabidopsis (Arabidopsis thaliana) seedlings and studied their response to interference with the plastid gene expression pathway of retrograde signaling. By comparing the proteomes of the genomes uncoupled1 (gun1) and gun5 mutants with the wild type, we show that GUN1 is critical in the maintenance of plastid protein homeostasis (proteostasis) when plastid translation is blocked. Combining transcriptomic and proteomic analyses of the wild type and gun1, we identified 181 highly translationally or posttranslationally regulated (HiToP) genes. We demonstrate that HiToP photosynthesis-associated nuclear genes (PhANGs) are largely regulated by translational repression, while HiToP ribosomal protein genes are regulated posttranslationally, likely at the level of protein stability without the involvement of GUN1. Our findings suggest distinct posttranscriptional control mechanisms of nuclear gene expression in response to plastid-derived retrograde signals. They also reveal a role for GUN1 in the translational regulation of several PhANGs and highlight extensive posttranslational regulation that does not necessitate GUN1. This study advances our understanding of the molecular mechanisms underlying intracellular communication and provides new insight into cellular responses to impaired plastid protein biosynthesis.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Plastids/metabolism , Seedlings/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cell Nucleus/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Photosynthesis/genetics , Photosynthesis/physiology , Seedlings/genetics , Signal Transduction/genetics , Signal Transduction/physiology
14.
Nat Plants ; 5(5): 525-538, 2019 05.
Article in English | MEDLINE | ID: mdl-31061535

ABSTRACT

Communication between organelles and the nucleus is essential for fitness and survival. Retrograde signals are cues emitted from the organelles to regulate nuclear gene expression. GENOMES UNCOUPLED1 (GUN1), a protein of unknown function, has emerged as a central integrator, participating in multiple retrograde signalling pathways that collectively regulate the nuclear transcriptome. Here, we show that GUN1 regulates chloroplast protein import through interaction with the import-related chaperone cpHSC70-1. We demonstrated that overaccumulation of unimported precursor proteins (preproteins) in the cytosol causes a GUN phenotype in the wild-type background and enhances the GUN phenotype of the gun1 mutant. Furthermore, we identified the cytosolic HSP90 chaperone complex, induced by overaccumulated preproteins, as a central regulator of photosynthetic gene expression that determines the expression of the GUN phenotype. Taken together, our results suggest a model in which protein import capacity, folding stress and the cytosolic HSP90 complex control retrograde communication.


Subject(s)
Arabidopsis Proteins/physiology , DNA-Binding Proteins/physiology , Arabidopsis/metabolism , Arabidopsis/physiology , Arabidopsis Proteins/metabolism , Chloroplasts/metabolism , Cytosol/metabolism , DNA-Binding Proteins/metabolism , HSC70 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Signal Transduction/physiology , Transcriptome
15.
Annu Rev Plant Biol ; 70: 23-50, 2019 04 29.
Article in English | MEDLINE | ID: mdl-30822116

ABSTRACT

Plant mitochondria play a major role during respiration by producing the ATP required for metabolism and growth. ATP is produced during oxidative phosphorylation (OXPHOS), a metabolic pathway coupling electron transfer with ADP phosphorylation via the formation and release of a proton gradient across the inner mitochondrial membrane. The OXPHOS system is composed of large, multiprotein complexes coordinating metal-containing cofactors for the transfer of electrons. In this review, we summarize the current state of knowledge about assembly of the OXPHOS complexes in land plants. We present the different steps involved in the formation of functional complexes and the regulatory mechanisms controlling the assembly pathways. Because several assembly steps have been found to be ancestral in plants-compared with those described in fungal and animal models-we discuss the evolutionary dynamics that lead to the conservation of ancestral pathways in land plant mitochondria.


Subject(s)
Embryophyta , Oxidative Phosphorylation , Animals , Cell Respiration , Electron Transport , Mitochondria
16.
Plant J ; 97(3): 447-459, 2019 02.
Article in English | MEDLINE | ID: mdl-30347487

ABSTRACT

All present-day mitochondria originate from a single endosymbiotic event that gave rise to the last eukaryotic common ancestor more than a billion years ago. However, to date, many aspects of mitochondrial evolution have remained unresolved. Comparative genomics and proteomics have revealed a complex evolutionary origin for many mitochondrial components. To understand the evolution of the respiratory chain, we have examined both the components and the mechanisms of the assembly pathway of complex I. Complex I represents the first enzyme in the respiratory chain, and complex I deficiencies have dramatic consequences in both animals and plants. The complex is located in the mitochondrial inner membrane and possesses two arms: one embedded in the inner membrane and one protruding in the matrix. Here, we describe the assembly pathway of complex I in the model plant Arabidopsis thaliana. Using a proteomics approach called complexome profiling, we have resolved the different steps in the assembly process in plants. We propose a model for the stepwise assembly of complex I, including every subunit. We then compare this pathway with the corresponding pathway in humans and find that complex I assembly in plants follows a different, and likely ancestral, pathway compared with the one in humans. We show that the main evolutionary changes in complex I structure and assembly in humans occurred at the level of the membrane arm, whereas the matrix arm remained rather conserved.


Subject(s)
Arabidopsis/enzymology , Electron Transport Complex I/metabolism , Arabidopsis/genetics , Electron Transport , Electron Transport Complex I/genetics , Evolution, Molecular , Mitochondria/metabolism , Proteomics
17.
J Biol Chem ; 293(32): 12440-12453, 2018 08 10.
Article in English | MEDLINE | ID: mdl-29853640

ABSTRACT

Small molecules not only represent cellular building blocks and metabolic intermediates, but also regulatory ligands and signaling molecules that interact with proteins. Although these interactions affect cellular metabolism, growth, and development, they have been largely understudied. Herein, we describe a method, which we named PROtein-Metabolite Interactions using Size separation (PROMIS), that allows simultaneous, global analysis of endogenous protein-small molecule and of protein-protein complexes. To this end, a cell-free native lysate from Arabidopsis thaliana cell cultures was fractionated by size-exclusion chromatography, followed by quantitative metabolomic and proteomic analyses. Proteins and small molecules showing similar elution behavior, across protein-containing fractions, constituted putative interactors. Applying PROMIS to an A. thaliana extract, we ascertained known protein-protein (PPIs) and protein-metabolite (PMIs) interactions and reproduced binding between small-molecule protease inhibitors and their respective proteases. More importantly, we present examples of two experimental strategies that exploit the PROMIS dataset to identify novel PMIs. By looking for similar elution behavior of metabolites and enzymes belonging to the same biochemical pathways, we identified putative feedback and feed-forward regulations in pantothenate biosynthesis and the methionine salvage cycle, respectively. By combining PROMIS with an orthogonal affinity purification approach, we identified an interaction between the dipeptide Tyr-Asp and the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase. In summary, we present proof of concept for a powerful experimental tool that enables system-wide analysis of PMIs and PPIs across all biological systems. The dataset obtained here comprises nearly 140 metabolites and 5000 proteins, which can be mined for putative interactors.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Chromatography, Gel/methods , Metabolome , Proteome/metabolism , Proteomics/methods , Software , Protein Binding , Proteome/isolation & purification
18.
Curr Biol ; 28(10): 1614-1619.e3, 2018 05 21.
Article in English | MEDLINE | ID: mdl-29731304

ABSTRACT

Parasitism is a life history strategy found across all domains of life whereby nutrition is obtained from a host. It is often associated with reductive evolution of the genome, including loss of genes from the organellar genomes [1, 2]. In some unicellular parasites, the mitochondrial genome (mitogenome) has been lost entirely, with far-reaching consequences for the physiology of the organism [3, 4]. Recently, mitogenome sequences of several species of the hemiparasitic plant mistletoe (Viscum sp.) have been reported [5, 6], revealing a striking loss of genes not seen in any other multicellular eukaryotes. In particular, the nad genes encoding subunits of respiratory complex I are all absent and other protein-coding genes are also lost or highly diverged in sequence, raising the question what remains of the respiratory complexes and mitochondrial functions. Here we show that oxidative phosphorylation (OXPHOS) in European mistletoe, Viscum album, is highly diminished. Complex I activity and protein subunits of complex I could not be detected. The levels of complex IV and ATP synthase were at least 5-fold lower than in the non-parasitic model plant Arabidopsis thaliana, whereas alternative dehydrogenases and oxidases were higher in abundance. Carbon flux analysis indicates that cytosolic reactions including glycolysis are greater contributors to ATP synthesis than the mitochondrial tricarboxylic acid (TCA) cycle. Our results describe the extreme adjustments in mitochondrial functions of the first reported multicellular eukaryote without complex I.


Subject(s)
Electron Transport Complex I/genetics , Electron Transport/physiology , Mitochondria/metabolism , Viscum album/genetics , Electron Transport Complex I/metabolism , Oxidative Phosphorylation , Viscum album/metabolism
19.
Biochem J ; 475(4): 759-773, 2018 02 23.
Article in English | MEDLINE | ID: mdl-29358189

ABSTRACT

While mitochondrial mutants of the respiratory machinery are rare and often lethal, cytoplasmic male sterility (CMS), a mitochondrially inherited trait that results in pollen abortion, is frequently encountered in wild populations. It generates a breeding system called gynodioecy. In Beta vulgaris ssp. maritima, a gynodioecious species, we found CMS-G to be widespread across the distribution range of the species. Despite the sequencing of the mitochondrial genome of CMS-G, the mitochondrial sterilizing factor causing CMS-G is still unknown. By characterizing biochemically CMS-G, we found that the expression of several mitochondrial proteins is altered in CMS-G plants. In particular, Cox1, a core subunit of the cytochrome c oxidase (complex IV), is larger but can still assemble into complex IV. However, the CMS-G-specific complex IV was only detected as a stabilized dimer. We did not observe any alteration of the affinity of complex IV for cytochrome c; however, in CMS-G, complex IV capacity is reduced. Our results show that CMS-G is maintained in many natural populations despite being associated with an atypical complex IV. We suggest that the modified complex IV could incur the associated cost predicted by theoretical models to maintain gynodioecy in wild populations.


Subject(s)
Beta vulgaris/genetics , Cytoplasm/genetics , Electron Transport Complex IV/genetics , Plant Infertility/genetics , Beta vulgaris/growth & development , Genome, Mitochondrial/genetics , Mitochondria/enzymology , Mitochondria/genetics , Mutation , Pollen/genetics
20.
Plant Physiol ; 176(3): 2472-2495, 2018 03.
Article in English | MEDLINE | ID: mdl-29367233

ABSTRACT

The exchange of signals between cellular compartments coordinates development and differentiation, modulates metabolic pathways, and triggers responses to environmental conditions. The proposed central regulator of plastid-to-nucleus retrograde signaling, GENOMES UNCOUPLED1 (GUN1), is present at very low levels, which has hampered the discovery of its precise molecular function. Here, we show that the Arabidopsis (Arabidopsis thaliana) GUN1 protein accumulates to detectable levels only at very early stages of leaf development, where it functions in the regulation of chloroplast biogenesis. GUN1 mRNA is present at high levels in all tissues, but GUN1 protein undergoes rapid degradation (with an estimated half-life of ∼4 h) in all tissues where chloroplast biogenesis has been completed. The rapid turnover of GUN1 is controlled mainly by the chaperone ClpC1, suggesting degradation of GUN1 by the Clp protease. Degradation of GUN1 slows under stress conditions that alter retrograde signaling, thus ensuring that the plant has sufficient GUN1 protein. We also find that the pentatricopeptide repeat motifs of GUN1 are important determinants of GUN1 stability. Moreover, overexpression of GUN1 causes an early flowering phenotype, suggesting a function of GUN1 in developmental phase transitions beyond chloroplast biogenesis. Taken together, our results provide new insight into the regulation of GUN1 by proteolytic degradation, uncover its function in early chloroplast biogenesis, and suggest a role in developmental phase transitions.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , DNA-Binding Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Chloroplast Proteins/genetics , Chloroplast Proteins/metabolism , Chloroplasts/metabolism , DNA-Binding Proteins/genetics , Flowers/genetics , Gene Expression Regulation, Plant , Half-Life , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/metabolism , Plants, Genetically Modified , Plastids/genetics , Plastids/metabolism , Protein Biosynthesis , Protein Stability , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...