Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Publication year range
1.
J Relig Health ; 61(1): 601-615, 2022 Feb.
Article in English | MEDLINE | ID: mdl-32948977

ABSTRACT

Health and holistic quality of life, physical and emotional needs, somatic and spiritual aspects contain a comprehensive promise of healing. The aim of the current study is to measure the expectations of patients of medicine, alternative medicine and religion related to health and illness. The survey was carried out among 103 patients of a rural general practitioner from May to June 2013 and among 103 patients of the outpatient department for endocrinology and metabolic disease of the Jena University Hospital in 2013. All patients were asked by one interviewer (HM) on fears in relation to health/illness and expectations of help for its own life, medicine, alternative medicine and religion. The biggest fear of patients is "being in need of help of others." There is no significant difference between religious and non-religious patients. Overall, the expectations of medicine were significantly higher in all sectors than in alternative medicine or religion. Comparing alternative medicine and religion, the expectations of alternative medicine were significantly higher excluding consolation and inner peace. The expectations for medicine in general and for the physician are very high and comprehensive and go beyond diagnosis and realization of therapies. Patients expect hope, guidance, support, comfort, inner peace and advice most from medicine. This results in considerable challenges for the physician, especially in a healthcare system with limited resources and without suitable offers. There is an urgent need to integrate these requirements into daily routine.


Subject(s)
Complementary Therapies , Quality of Life , Humans , Motivation , Religion , Religion and Medicine , Spirituality , Surveys and Questionnaires
3.
PhytoKeys ; 187: 93-128, 2021.
Article in English | MEDLINE | ID: mdl-35068970

ABSTRACT

Leaves are the most abundant and visible plant organ, both in the modern world and the fossil record. Identifying foliage to the correct plant family based on leaf architecture is a fundamental botanical skill that is also critical for isolated fossil leaves, which often, especially in the Cenozoic, represent extinct genera and species from extant families. Resources focused on leaf identification are remarkably scarce; however, the situation has improved due to the recent proliferation of digitized herbarium material, live-plant identification applications, and online collections of cleared and fossil leaf images. Nevertheless, the need remains for a specialized image dataset for comparative leaf architecture. We address this gap by assembling an open-access database of 30,252 images of vouchered leaf specimens vetted to family level, primarily of angiosperms, including 26,176 images of cleared and x-rayed leaves representing 354 families and 4,076 of fossil leaves from 48 families. The images maintain original resolution, have user-friendly filenames, and are vetted using APG and modern paleobotanical standards. The cleared and x-rayed leaves include the Jack A. Wolfe and Leo J. Hickey contributions to the National Cleared Leaf Collection and a collection of high-resolution scanned x-ray negatives, housed in the Division of Paleobotany, Department of Paleobiology, Smithsonian National Museum of Natural History, Washington D.C.; and the Daniel I. Axelrod Cleared Leaf Collection, housed at the University of California Museum of Paleontology, Berkeley. The fossil images include a sampling of Late Cretaceous to Eocene paleobotanical sites from the Western Hemisphere held at numerous institutions, especially from Florissant Fossil Beds National Monument (late Eocene, Colorado), as well as several other localities from the Late Cretaceous to Eocene of the Western USA and the early Paleogene of Colombia and southern Argentina. The dataset facilitates new research and education opportunities in paleobotany, comparative leaf architecture, systematics, and machine learning.

4.
Rev. peru. biol. (Impr.) ; 27(4): 517-528, Oct-Dec 2020. graf
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1150090

ABSTRACT

Resumen El Bosque Petrificado Piedra Chamana, cerca del pueblo de Sexi en Cajamarca, registra la vegetación de los trópicos de Sudamérica de hace 39 millones de años, la que existió en los inicios de la historia de los bosques tropicales del Nuevo Mundo y antes del levantamiento de los Andes. En este bosque, descubrimientos notables incluyen el manglar del género Avicennia, un género de árboles forestales emergentes (Cynometra), y el segundo dipterocarp conocido del Nuevo Mundo. La importancia de los fósiles se basa en sus circunstancias únicas de preservación, es así como fósiles de plantas y suelos antiguos permiten la reconstrucción detallada del bosque y el medio ambiente en que existieron, contribuyendo con el conocimiento del cambio climático. Los sitios como este bosque fósil son muy vulnerables al disturbio y pérdida de los recursos fósiles. El monitoreo muestra que las actividades humanas y la erosión están teniendo efectos serios y que son necesarias medidas urgentes para su conservación. La importancia de los fósiles para la ciencia, la belleza de esta área de los Andes, y el potencial para la educación y turismo justifican el reconocimiento del Bosque Petrificado Piedra Chamana a nivel internacional. El bosque tropical representado por los fósiles es muy diferente del bosque diverso esclerófilo de hoja ancha que se encuentra actualmente en el sitio. La pérdida del suelo y la erosión del substrato suave y poroso por alteración de la cubierta vegetal son una amenaza para la biota nativa y los fósiles. Por lo tanto, las medidas de conservación necesarias para proteger los fósiles tendrían múltiples beneficios para la ecología del área.


Abstract The Piedra Chamana Fossil Forest, near the village of Sexi in central Cajamarca, records the vegetation of the South American tropics 39 million years ago, early in the New World tropical forests history and before the rise of the present-day Andes. In this fossil forest, notable discoveries have included the mangrove genus Avicennia, a genus of emergent forest trees (Cynometra), and the second dipterocarp known from the New World. The significance of the fossils rests on the unique circumstances of preservation, the detailed reconstruction of the forest and environment that is possible based on the plant fossils and ancient soils, and the importance of this record for the study of climate change. Sites like the fossil forest are particularly vulnerable to disturbance and loss of the fossil resources. Ongoing monitoring shows that human activities and erosion are having serious effects and, conservation measures are urgently needed. The importance of the fossils for science, the beauty of this area of the Andes, and the potential of the site for education and tourism justify recognition of the fossil forest at an international level. The lowland tropical forest represented by the fossils is very different from the diverse broad-leaf sclerophyllous forest or woodland now growing in the area. Soil loss and erosion of the soft, porous volcanic substrate when the vegetation cover is disturbed poses a threat to both the native biota and the fossils. The conservation measures needed at the fossil site would have multiple benefits for the ecology of the region.

6.
Ann Bot ; 125(7): 1077-1089, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32161957

ABSTRACT

BACKGROUND AND AIMS: The Piedra Chamana fossil forest in northern Peru is an assemblage of angiosperm woods and leaves preserved in volcaniclastic rocks dated to 39 Mya (late Middle Eocene). We analysed the anatomical and morphological features of the fossils to reconstruct the palaeoenvironment during this time of global warmth, taking advantage of the co-occurrence of woods and leaves to compare different proxies and analytical approaches. METHODS: Wood characters analysed include vessel-related functional traits, traits linked to Baileyan trends, and quantitative features such as vessel diameter and density. Diameter-distribution and diameter and position plots are used to represent vessel diameter and arrangement. Leaf margin and area analysis provides additional climate estimates. KEY RESULTS: The fossil woods show many similarities with modern tropical-forest woods and tropical fossil-wood assemblages; closest correspondence within the Neotropics is to semi-deciduous lowland tropical forest with moderate precipitation (~1000-1200 mm). Features unusual for the modern South American tropics are mainly vessel-related characters (semi-ring porosity, grouped vessels, helical vessel thickenings, short vessel elements) linked to water stress or seasonal water availability. Leaf analysis indicates mean annual temperature of 31 °C (n = 19, 100 % entire-margined) and mean annual precipitation of 1290 mm (n = 22, predominantly microphylls and notophylls). CONCLUSIONS: The palaeovegetation was clearly lowland tropical forest with a dry aspect, but anomalous aspects of the wood anatomy are consistent with the high temperatures indicated by the leaves and are probably explained by differences in seasonality and water stress compared to the present-day Neotropics. A close modern analogue may be in very seasonal regions of Asia. Pronounced monsoonal (summer-rain) conditions may relate to a location (palaeolatitude of 13°S) outside the near-equatorial tropics.


Subject(s)
Fossils , Piedra , Asia , Humans , Peru , Plant Leaves , Trees , Tropical Climate , Wood
SELECTION OF CITATIONS
SEARCH DETAIL