Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Ecol Evol ; 14(3): e11103, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38529021

ABSTRACT

Pathogen genomic epidemiology has the potential to provide a deep understanding of population dynamics, facilitating strategic planning of interventions, monitoring their impact, and enabling timely responses, and thereby supporting control and elimination efforts of parasitic tropical diseases. Plasmodium vivax, responsible for most malaria cases outside Africa, shows high genetic diversity at the population level, driven by factors like sub-patent infections, a hidden reservoir of hypnozoites, and early transmission to mosquitoes. While Latin America has made significant progress in controlling Plasmodium falciparum, it faces challenges with residual P. vivax. To characterize genetic diversity and population structure and dynamics, we have analyzed the largest collection of P. vivax genomes to date, including 1474 high-quality genomes from 31 countries across Asia, Africa, Oceania, and America. While P. vivax shows high genetic diversity globally, Latin American isolates form a distinctive population, which is further divided into sub-populations and occasional clonal pockets. Genetic diversity within the continent was associated with the intensity of transmission. Population differentiation exists between Central America and the North Coast of South America, vs. the Amazon Basin, with significant gene flow within the Amazon Basin, but limited connectivity between the Northwest Coast and the Amazon Basin. Shared genomic regions in these parasite populations indicate adaptive evolution, particularly in genes related to DNA replication, RNA processing, invasion, and motility - crucial for the parasite's survival in diverse environments. Understanding these population-level adaptations is crucial for effective control efforts, offering insights into potential mechanisms behind drug resistance, immune evasion, and transmission dynamics.

2.
Appl Environ Microbiol ; 89(11): e0057723, 2023 11 29.
Article in English | MEDLINE | ID: mdl-37916820

ABSTRACT

IMPORTANCE: Marine hypoxia is a threat for corals but has remained understudied in tropical regions where coral reefs are abundant. Though microbial symbioses can alleviate the effects of ecological stress, we do not yet understand the taxonomic or functional response of the coral microbiome to hypoxia. In this study, we experimentally lowered oxygen levels around Siderastrea siderea and Agaricia lamarcki colonies in situ to observe changes in the coral microbiome in response to deoxygenation. Our results show that hypoxia triggers a stochastic change of the microbiome overall, with some bacterial families changing deterministically after just 48 hours of exposure. These families represent an increase in anaerobic and opportunistic taxa in the microbiomes of both coral species. Thus, marine deoxygenation destabilizes the coral microbiome and increases bacterial opportunism. This work provides novel and fundamental knowledge of the microbial response in coral during hypoxia and may provide insight into holobiont function during stress.


Subject(s)
Anthozoa , Microbiota , Humans , Animals , Anthozoa/microbiology , Coral Reefs , Bacteria/genetics , Hypoxia
3.
J Acoust Soc Am ; 154(3): 1628-1639, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37702434

ABSTRACT

The seat-dip effect (SDE) occurs when low-frequency sounds propagate through the seating area of a performance space. The physical aspects governing the effect still puzzle acousticians mostly due to the large variety of seating configurations. In this study, the SDE is investigated in three parameterized hall models using the finite-difference time-domain method to simulate a large number of seat configurations in order to quantify the contribution of different geometric properties related to the seating area. The results show that the step size defining the inclination angle of the seating area and the opening underneath the seats (or underpass) are significant factors contributing to the SDE, whereas the stage height and the source position are found to be less important. The results also demonstrate that with an underpass greater than the step size, the first frequency dip occurring between 80 and 100 Hz is mitigated regardless of the hall type considered. The phenomenon is also found to be predominant in the early part of the room response. Visualizations of spatial and time-frequency evolution in the halls are also provided for the cases where the seat properties are found to visibly affect the magnitude spectrum.

4.
PeerJ ; 11: e15170, 2023.
Article in English | MEDLINE | ID: mdl-37361046

ABSTRACT

Background: Coral diseases are one of the leading causes of declines in coral populations. In the Caribbean, white band disease (WBD) has led to a substantial loss of Acropora corals. Although the etiologies of this disease have not been well described, characterizing the coral microbiome during the transition from a healthy to diseased state is critical for understanding disease progression. Coral nurseries provide unique opportunities to further understand the microbial changes associated with diseased and healthy corals, because corals are monitored over time. We characterized the microbiomes before and during an outbreak of WBD in Acropora cervicornis reared in an ocean nursery in Little Cayman, CI. We asked (1) do healthy corals show the same microbiome over time (before and during a disease outbreak) and (2) are there disease signatures on both lesioned and apparently healthy tissues on diseased coral colonies? Methods: Microbial mucus-tissue slurries were collected from healthy coral colonies in 2017 (before the disease) and 2019 (during the disease onset). Diseased colonies were sampled at two separate locations on an individual coral colony: at the interface of Disease and ∼10 cm away on Apparently Healthy coral tissue. We sequenced the V4 region of the 16S rRNA gene to characterize bacterial and archaeal community composition in nursery-reared A. cervicornis. We assessed alpha diversity, beta diversity, and compositional differences to determine differences in microbial assemblages across health states (2019) and healthy corals between years (2017 and 2019). Results: Microbial communities from healthy A. cervicornis from 2017 (before disease) and 2019 (after disease) did not differ significantly. Additionally, microbial communities from Apparently Healthy samples on an otherwise diseased coral colony were more similar to Healthy colonies than to the diseased portion on the same colony for both alpha diversity and community composition. Microbial communities from Diseased tissues had significantly higher alpha diversity than both Healthy and Apparently Healthy tissues but showed no significant difference in beta-diversity dispersion. Our results show that at the population scale, Healthy and Apparently Healthy coral tissues are distinct from microbial communities associated with Diseased tissues. Furthermore, our results suggest stability in Little Cayman nursery coral microbiomes over time. We show healthy Caymanian nursery corals had a stable microbiome over a two-year period, an important benchmark for evaluating coral health via their microbiome.


Subject(s)
Anthozoa , Animals , Anthozoa/genetics , Coral Reefs , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Caribbean Region
5.
Commun Biol ; 6(1): 248, 2023 04 06.
Article in English | MEDLINE | ID: mdl-37024599

ABSTRACT

Considered one of the most devastating coral disease outbreaks in history, stony coral tissue loss disease (SCTLD) is currently spreading throughout Florida's coral reefs and the greater Caribbean. SCTLD affects at least two dozen different coral species and has been implicated in extensive losses of coral cover. Here we show Pseudoalteromonas sp. strain McH1-7 has broad-spectrum antibacterial activity against SCTLD-associated bacterial isolates. Chemical analyses indicated McH1-7 produces at least two potential antibacterials, korormicin and tetrabromopyrrole, while genomic analysis identified the genes potentially encoding an L-amino acid oxidase and multiple antibacterial metalloproteases (pseudoalterins). During laboratory trials, McH1-7 arrested or slowed disease progression on 68.2% of diseased Montastraea cavernosa fragments treated (n = 22), and it prevented disease transmission by 100% (n = 12). McH1-7 is the most chemically characterized coral probiotic that is an effective prophylactic and direct treatment for the destructive SCTLD as well as a potential alternative to antibiotic use.


Subject(s)
Anthozoa , Animals , Anthozoa/microbiology , Coral Reefs , Genomics , Caribbean Region
6.
ISME Commun ; 3(1): 19, 2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36894742

ABSTRACT

Stony coral tissue loss disease (SCTLD) has been causing significant whole colony mortality on reefs in Florida and the Caribbean. The cause of SCTLD remains unknown, with the limited concurrence of SCTLD-associated bacteria among studies. We conducted a meta-analysis of 16S ribosomal RNA gene datasets generated by 16 field and laboratory SCTLD studies to find consistent bacteria associated with SCTLD across disease zones (vulnerable, endemic, and epidemic), coral species, coral compartments (mucus, tissue, and skeleton), and colony health states (apparently healthy colony tissue (AH), and unaffected (DU) and lesion (DL) tissue from diseased colonies). We also evaluated bacteria in seawater and sediment, which may be sources of SCTLD transmission. Although AH colonies in endemic and epidemic zones harbor bacteria associated with SCTLD lesions, and aquaria and field samples had distinct microbial compositions, there were still clear differences in the microbial composition among AH, DU, and DL in the combined dataset. Alpha-diversity between AH and DL was not different; however, DU showed increased alpha-diversity compared to AH, indicating that, prior to lesion formation, corals may undergo a disturbance to the microbiome. This disturbance may be driven by Flavobacteriales, which were especially enriched in DU. In DL, Rhodobacterales and Peptostreptococcales-Tissierellales were prominent in structuring microbial interactions. We also predict an enrichment of an alpha-toxin in DL samples which is typically found in Clostridia. We provide a consensus of SCTLD-associated bacteria prior to and during lesion formation and identify how these taxa vary across studies, coral species, coral compartments, seawater, and sediment.

7.
J Environ Manage ; 337: 117668, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-36958278

ABSTRACT

Emerging diseases can have devastating consequences for wildlife and require a rapid response. A critical first step towards developing appropriate management is identifying the etiology of the disease, which can be difficult to determine, particularly early in emergence. Gathering and synthesizing existing information about potential disease causes, by leveraging expert knowledge or relevant existing studies, provides a principled approach to quickly inform decision-making and management efforts. Additionally, updating the current state of knowledge as more information becomes available over time can reduce scientific uncertainty and lead to substantial improvement in the decision-making process and the application of management actions that incorporate and adapt to newly acquired scientific understanding. Here we present a rapid prototyping method for quantifying belief weights for competing hypotheses about the etiology of disease using a combination of formal expert elicitation and Bayesian hierarchical modeling. We illustrate the application of this approach for investigating the etiology of stony coral tissue loss disease (SCTLD) and discuss the opportunities and challenges of this approach for addressing emergent diseases. Lastly, we detail how our work may apply to other pressing management or conservation problems that require quick responses. We found the rapid prototyping methods to be an efficient and rapid means to narrow down the number of potential hypotheses, synthesize current understanding, and help prioritize future studies and experiments. This approach is rapid by providing a snapshot assessment of the current state of knowledge. It can also be updated periodically (e.g., annually) to assess changes in belief weights over time as scientific understanding increases. Synthesis and applications: The rapid prototyping approaches demonstrated here can be used to combine knowledge from multiple experts and/or studies to help with fast decision-making needed for urgent conservation issues including emerging diseases and other management problems that require rapid responses. These approaches can also be used to adjust belief weights over time as studies and expert knowledge accumulate and can be a helpful tool for adapting management decisions.


Subject(s)
Anthozoa , Animals , Bayes Theorem , Uncertainty
8.
iScience ; 26(4): 106286, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-36942053

ABSTRACT

Animal models for studying human pathogens are crucially lacking. We describe the implantation in mice of engineered human mature microvasculature consisting of endothelial and perivascular cells embedded in collagen hydrogel that allows investigation of pathogen interactions with the endothelium, including in vivo functional studies. Using Neisseria meningitidis as a paradigm of human-restricted infection, we demonstrated the strength and opportunities associated with the use of this approach.

9.
Mar Drugs ; 21(2)2023 Jan 22.
Article in English | MEDLINE | ID: mdl-36827117

ABSTRACT

Black band disease is a globally distributed and easily recognizable coral disease. Despite years of study, the etiology of this coral disease, which impacts dozens of stony coral species, is not completely understood. Although black band disease mats are predominantly composed of the cyanobacterial species Roseofilum reptotaenium, other filamentous cyanobacterial strains and bacterial heterotrophs are readily detected. Through chemical ecology and metagenomic sequencing, we uncovered cryptic strains of Roseofilum species from Siderastrea siderea corals that differ from those on other corals in the Caribbean and Pacific. Isolation of metabolites from Siderastrea-derived Roseofilum revealed the prevalence of unique forms of looekeyolides, distinct from previously characterized Roseofilum reptotaenium strains. In addition, comparative genomics of Roseofilum strains showed that only Siderastrea-based Roseofilum strains have the genetic capacity to produce lasso peptides, a family of compounds with diverse biological activity. All nine Roseofilum strains examined here shared the genetic capacity to produce looekeyolides and malyngamides, suggesting these compounds support the ecology of this genus. Similar biosynthetic gene clusters are not found in other cyanobacterial genera associated with black band disease, which may suggest that looekeyolides and malyngamides contribute to disease etiology through yet unknown mechanisms.


Subject(s)
Anthozoa , Cyanobacteria , Animals , Anthozoa/microbiology , Cyanobacteria/metabolism , Genomics , Metagenomics
10.
J Acoust Soc Am ; 152(4): 2266, 2022 10.
Article in English | MEDLINE | ID: mdl-36319249

ABSTRACT

Room acoustic simulations using the finite-difference time-domain method on a wide frequency range can be computationally expensive and typically contain numerical dispersion. Numerical dispersion can be audible and, thus, constitutes an artifact in auralizations. There is a need to measure perceptual thresholds for numerical dispersion to achieve an optimal balance between computational complexity and audibility of dispersion. This work measures the perceptual detection thresholds for numerical dispersion in binaural auralizations of two acoustically different rooms. Numerical dispersion is incorporated into measured binaural room impulse responses (BRIRs) by the means of filters that represent the dispersion that plane waves experience, which propagate in the simulation in the direction of the worst-case dispersion error. The results show that the perceptual detection threshold is generally lower for the most reverberant room and greatly depends on the source signal independently of the room in which the threshold is measured. It is the most noticeable in the pure BRIRs, i.e., with an impulse as source signal, and almost unnoticeable with speech. The results also show that there was no statistical evidence that the perceptual thresholds for the conditions where numerical dispersion was present or absent in the direct path of the BRIRs be different.


Subject(s)
Acoustics , Speech Perception , Acoustic Stimulation/methods , Speech Perception/physiology , Speech , Computer Simulation , Perceptual Masking/physiology , Auditory Threshold/physiology
11.
Sci Rep ; 12(1): 19286, 2022 11 11.
Article in English | MEDLINE | ID: mdl-36369337

ABSTRACT

Marine infectious diseases are a leading cause of population declines globally due, in large part, to challenges in diagnosis and limited treatment options. Mitigating disease spread is particularly important for species targeted for conservation. In some systems, strategic arrangement of organisms in space can constrain disease outbreaks, however, this approach has not been used in marine restoration. Reef building corals have been particularly devastated by disease and continue to experience catastrophic population declines. We show that mixtures of genotypes (i.e., diversity) increased disease resistance in the critically endangered Acropora cervicornis, a species that is frequently targeted for restoration of degraded reefs in the broader Caribbean region. This finding suggests a more generalized relationship between diversity and disease and offers a viable strategy for mitigating the spread of infectious diseases in corals that likely applies to other foundation species targeted for restoration.


Subject(s)
Anthozoa , Animals , Anthozoa/genetics , Endangered Species , Disease Resistance/genetics , Genotype , Caribbean Region , Coral Reefs
12.
JASA Express Lett ; 2(6): 062401, 2022 06.
Article in English | MEDLINE | ID: mdl-36154157

ABSTRACT

This paper presents a verification procedure for finite-difference time-domain-simulated head-related transfer functions (HRTFs) from a simplified model of a human head, a sphere. The analytic solution required by the code verification is computed with the multipole reexpansion technique and used to estimate convergence rates. A solution verification process follows in which asymptotic predictions are computed. For the HRTFs considered and employed grids, results show that the convergence rates attain the expected first-order accuracy at lower frequencies, after which scattered estimates are observed. Results also reveal that the asymptotic predictions are accurate up to 10 kHz, after which bias is observed.

13.
Viruses ; 14(9)2022 08 30.
Article in English | MEDLINE | ID: mdl-36146737

ABSTRACT

The use of saliva for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sparks debate due to presumed lower sensitivity and lack of standardization. Our aim was to evaluate the performance characteristics of (i) saliva collected by the ORAcollectTM device as a matrix for SARS-CoV-2 reverse-transcriptase polymerase chain reaction (RT-PCR), and (ii) 2 saliva rapid antigen tests (AgRDT). From 342 ambulatory individuals, both a nasopharyngeal swab and saliva sample via ORAcollectTM were obtained for a SARS-CoV-2 RT-PCR test. Furthermore, 54 and 123 additionally performed the V-ChekTM or WhistlingTM saliva AgRDT. In total, 35% of individuals screened positive for SARS-CoV-2 via nasopharyngeal swab. Saliva, as a matrix for the RT-PCR, had a specificity of 96.5% and a negative predictive value (NPV) of 91.3%. Interestingly, 6 out of 8 patients thought to be false positive in saliva re-tested positive by nasopharyngeal sampling after 2 to 9 days. Both V-ChekTM and WhistlingTM AgRDT had a lack of sensitivity, resulting in an NPV of 66.9 and 67.3%, respectively. Saliva proved to be a sensitive and specific matrix for SARS-CoV-2 detection by the RT-PCR. In this setting, saliva might have an earlier window of detection than the nasopharyngeal swab. By contrast, both AgRDT showed an unacceptably low sensitivity and NPV.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Clinical Laboratory Techniques/methods , Humans , Nasopharynx , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , Saliva , Sensitivity and Specificity , Specimen Handling/methods
14.
J Nat Prod ; 85(3): 462-478, 2022 03 25.
Article in English | MEDLINE | ID: mdl-35112871

ABSTRACT

Stony corals (Scleractinia) are invertebrates that form symbiotic relationships with eukaryotic algal endosymbionts and the prokaryotic microbiome. The microbiome has the potential to produce bioactive natural products providing defense and resilience to the coral host against pathogenic microorganisms, but this potential has not been extensively explored. Bacterial pathogens can pose a significant threat to corals, with some species implicated in primary and opportunistic infections of various corals. In response, probiotics have been proposed as a potential strategy to protect corals in the face of increased incidence of disease outbreaks. In this study, we screened bacterial isolates from healthy and diseased corals for antibacterial activity. The bioactive extracts were analyzed using untargeted metabolomics. Herein, an UpSet plot and hierarchical clustering analyses were performed to identify isolates with the largest number of unique metabolites. These isolates also displayed different antibacterial activities. Through application of in silico and experimental approaches coupled with genome analysis, we dereplicated natural products from these coral-derived bacteria from Florida's coral reef environments. The metabolomics approach highlighted in this study serves as a useful resource to select probiotic candidates and enables insights into natural product-mediated chemical ecology in holobiont symbiosis.


Subject(s)
Anthozoa , Biological Products , Animals , Anthozoa/microbiology , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Biological Products/metabolism , Biological Products/pharmacology , Metabolomics , Symbiosis
15.
Bioanalysis ; 14(22): 1443-1452, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36651218

ABSTRACT

Tucatinib, a tyrosine kinase inhibitor of HER2, is approved in multiple regions for metastatic breast cancer and is being evaluated in metastatic colorectal and gastric cancers. During clinical development, quantification of tucatinib plasma concentrations for pharmacokinetic analysis was performed using MS/MS analysis by three laboratories using five different methods. Cross-validation was required to confirm data across laboratories were comparable. A five-way cross-validation procedure was developed where bioanalysis performed by one laboratory and method was used as a 'base' against which the other methods were validated. This cross-validation method provides an alternative to multiple head-to-head comparisons between two methods, and enabled combination of data from multiple tucatinib clinical trials for a single population pharmacokinetic analysis.


A five-way cross-validation approach was successfully used to compare pharmacokinetic samples, tested using five different methods over twelve clinical trials, allowing combination of data and avoiding the need for multiple head-to-head method comparisons.


Subject(s)
Breast Neoplasms , Tandem Mass Spectrometry , Humans , Female , Tandem Mass Spectrometry/methods , Breast Neoplasms/drug therapy , Pyridines/therapeutic use , Oxazoles
16.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Article in English | MEDLINE | ID: mdl-34725157

ABSTRACT

Neisseria meningitidis utilizes type IV pili (T4P) to adhere to and colonize host endothelial cells, a process at the heart of meningococcal invasive diseases leading to meningitis and sepsis. T4P are polymers of an antigenically variable major pilin building block, PilE, plus several core minor pilins that initiate pilus assembly and are thought to be located at the pilus tip. Adhesion of N. meningitidis to human endothelial cells requires both PilE and a conserved noncore minor pilin PilV, but the localization of PilV and its precise role in this process remains to be clarified. Here, we show that both PilE and PilV promote adhesion to endothelial vessels in vivo. The substantial adhesion defect observed for pilV mutants suggests it is the main adhesin. Consistent with this observation, superresolution microscopy showed the abundant distribution of PilV throughout the pilus. We determined the crystal structure of PilV and modeled it within the pilus filament. The small size of PilV causes it to be recessed relative to adjacent PilE subunits, which are dominated by a prominent hypervariable loop. Nonetheless, we identified a conserved surface-exposed adhesive loop on PilV by alanine scanning mutagenesis. Critically, antibodies directed against PilV inhibit N. meningitidis colonization of human skin grafts. These findings explain how N. meningitidis T4P undergo antigenic variation to evade the humoral immune response while maintaining their adhesive function and establish the potential of this highly conserved minor pilin as a vaccine and therapeutic target for the prevention and treatment of N. meningitidis infections.


Subject(s)
Bacterial Adhesion , Bacterial Proteins/physiology , Fimbriae, Bacterial/physiology , Neisseria meningitidis/physiology , Animals , Antibodies/therapeutic use , Bacterial Proteins/chemistry , Bacterial Proteins/ultrastructure , Cell Line , Drug Evaluation, Preclinical , Female , Fimbriae, Bacterial/chemistry , Fimbriae, Bacterial/ultrastructure , Humans , Meningococcal Infections/drug therapy , Mice, SCID
17.
Front Nutr ; 8: 757256, 2021.
Article in English | MEDLINE | ID: mdl-34722616

ABSTRACT

Obesity is considered a primary contributing factor in the development of many diseases, including cancer, diabetes, and cardiovascular illnesses. Phytochemical-rich foods, associated to healthy gastrointestinal microbiota, have been shown to reduce obesity and associated comorbidities. In the present article, we describe the effects of the probiotic Lactobacillus johnsonii N6.2 and blueberry extracts (BB) on the gut microbiota and lipid profile of rats under a high-fat (HF) or low-calorie (LC) diet. L. johnsonii was found to increase the levels of long chain fatty acids (LCFA) in the serum of all animals under HF diet, while reduced LCFA concentrations were observed in the adipose tissue of animals under HF diet supplemented with BB extracts. All animals under HF diet also showed lower protein levels of SREBP1 and SCAP when treated with L. johnsonii. The gut microbiota diversity, ß-diversity was significantly changed by L. johnsonii in the presence of BB. A significant reduction in α-diversity was observed in the ileum of animals under HF diet supplemented with L. johnsonii and BB, while increased α-diversity was observed in the ilium of animals under LC diet supplemented with L. johnsonii or BB. In summary, L. johnsonii and BB supplementation induced significant changes in gut microbiota diversity and lipid metabolism. The phospholipids pool was the lipidome component directly affected by the interventions. The ileum and colon microbiota showed clear differences depending on the diet and the treatments examined.

18.
mSystems ; 6(3): e0124920, 2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34156291

ABSTRACT

Bacteria associated with coral hosts are diverse and abundant, with recent studies suggesting involvement of these symbionts in host resilience to anthropogenic stress. Despite their putative importance, the work dedicated to culturing coral-associated bacteria has received little attention. Combining published and unpublished data, here we report a comprehensive overview of the diversity and function of culturable bacteria isolated from corals originating from tropical, temperate, and cold-water habitats. A total of 3,055 isolates from 52 studies were considered by our metasurvey. Of these, 1,045 had full-length 16S rRNA gene sequences, spanning 138 formally described and 12 putatively novel bacterial genera across the Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria phyla. We performed comparative genomic analysis using the available genomes of 74 strains and identified potential signatures of beneficial bacterium-coral symbioses among the strains. Our analysis revealed >400 biosynthetic gene clusters that underlie the biosynthesis of antioxidant, antimicrobial, cytotoxic, and other secondary metabolites. Moreover, we uncovered genomic features-not previously described for coral-bacterium symbioses-potentially involved in host colonization and host-symbiont recognition, antiviral defense mechanisms, and/or integrated metabolic interactions, which we suggest as novel targets for the screening of coral probiotics. Our results highlight the importance of bacterial cultures to elucidate coral holobiont functioning and guide the selection of probiotic candidates to promote coral resilience and improve holistic and customized reef restoration and rehabilitation efforts. IMPORTANCE Our paper is the first study to synthesize currently available but decentralized data of cultured microbes associated with corals. We were able to collate 3,055 isolates across a number of published studies and unpublished collections from various laboratories and researchers around the world. This equated to 1,045 individual isolates which had full-length 16S rRNA gene sequences, after filtering of the original 3,055. We also explored which of these had genomes available. Originally, only 36 were available, and as part of this study, we added a further 38-equating to 74 in total. From this, we investigated potential genetic signatures that may facilitate a host-associated lifestyle. Further, such a resource is an important step in the selection of probiotic candidates, which are being investigated for promoting coral resilience and potentially applied as a novel strategy in reef restoration and rehabilitation efforts. In the spirit of open access, we have ensured this collection is available to the wider research community through the web site http://isolates.reefgenomics.org/ with the hope many scientists across the globe will ask for access to these cultures for future studies.

19.
Obes Rev ; 22(9): e13276, 2021 09.
Article in English | MEDLINE | ID: mdl-33960625

ABSTRACT

Body mass index (BMI) at child and adolescent ages is positively associated with adult coronary heart disease (CHD) whereas height at these ages may be inversely associated with CHD. However, potential effects of age, sex, and socioeconomic status on associations between BMI and CHD are less investigated. We conducted a systematic review and meta-analysis of BMI and height at ages 2-19 years in relation to adult CHD and examined effects of age, sex, socioeconomic status, and other factors. Twenty-two studies on BMI and five on height were included, comprising 5,538,319 individuals and 69,830 CHD events. Random effects meta-analyses were conducted. Child and adolescent BMI were positively associated with CHD (hazard ratio = 1.12; 95% confidence interval [CI] [1.01, 1.25] per standard deviation [SD]), and categorical analyses supported these findings. The associations did not significantly differ by age, sex, or by adjustment for socioeconomic status. Child and adolescent height were inversely associated with CHD (hazard ratio = 0.87; 95% CI [0.81, 0.93] per SD), and categorical analyses agreed. Insufficient studies on height precluded subgroup analyses. Heterogeneity was generally high in all analyses. We found that BMI in youth is positively associated with adult CHD regardless of sex or adjustment for socioeconomic status whereas height is inversely associated with later risk of CHD.


Subject(s)
Coronary Disease , Adolescent , Adult , Birth Weight , Body Height , Body Mass Index , Child , Child, Preschool , Coronary Disease/epidemiology , Coronary Disease/etiology , Humans , Risk Factors , Young Adult
20.
J Clin Microbiol ; 59(3)2021 02 18.
Article in English | MEDLINE | ID: mdl-33328176

ABSTRACT

Staphylococcus epidermidis is a pathogen emerging worldwide as a leading cause of health care-associated infections. A standardized high-resolution typing method to document transmission and dissemination of multidrug-resistant S. epidermidis strains is needed. Our aim was to provide a core genome multilocus sequence typing (cgMLST) scheme for S. epidermidis to improve the international surveillance of S. epidermidis We defined a cgMLST scheme based on 699 core genes and used it to investigate the population structure of the species and the genetic relatedness of isolates recovered from infants hospitalized in several wards of a French hospital. Our results show the long-lasting endemic persistence of S. epidermidis clones within and across wards of hospitals and demonstrate the ability of our cgMLST approach to identify and track these clones. We made the scheme publicly available through the Institut Pasteur BIGSdb server (http://bigsdb.pasteur.fr/epidermidis/). This tool should enable international harmonization of the epidemiological surveillance of multidrug-resistant S. epidermidis clones. By comparing gene distribution among infection and commensal isolates, we also confirmed the association of the mecA locus with infection isolates and of the fdh gene with commensal isolates. (This study has been registered at ClinicalTrials.gov under registration no. NCT03374371.).


Subject(s)
Staphylococcal Infections , Staphylococcus epidermidis , Clone Cells , Genome, Bacterial/genetics , Hospitals , Humans , Multilocus Sequence Typing , Staphylococcal Infections/epidemiology , Staphylococcus epidermidis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...