Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mycologia ; : 1-12, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949868

ABSTRACT

Fungi occupy important environmental, cultural, and socioeconomic roles. However, biological research of this diverse kingdom has lagged behind that of other phylogenetic groups. This is partially the result of the notorious difficulty in culturing a diverse array of filamentous fungal species due to their (i) often unpredictable growth, (ii) unknown preferences for culturing conditions, and (iii) long incubation times compared with other microorganisms such as bacteria and yeasts. Given the complexity associated with concurrently culturing diverse fungal species, developing practical methods for preserving as many species as possible for future research is vital. The widely accepted best practice for preserving fungal tissue is the use of cryogenic biobanking at -165 C, allowing for the preservation and documentation of stable genetic lineages, thus enabling long-term diversity-centered research. Despite the extensive literature on fungal cryopreservation, substantial barriers remain for implementation of cryogenic biobanks in smaller mycological laboratories. In this work, we present practical considerations for the establishment of a fungal culture biobank, as well as provide evidence for the viability of 61 fungal genera in cryogenic storage. By providing a pragmatic methodology for cryogenically preserving and managing many filamentous fungi, we show that creating a biobank can be economical for independently owned and operated mycology laboratories, which can serve as a long-term resource for biodiversity, conservation, and strain maintenance.

2.
Nat Commun ; 10(1): 5356, 2019 12 16.
Article in English | MEDLINE | ID: mdl-31844055

ABSTRACT

The climate and environmental significance of the Deccan Traps large igneous province of west-central India has been the subject of debate in paleontological communities. Nearly one million years of semi-continuous Deccan eruptive activity spanned the Cretaceous-Paleogene boundary, which is renowned for the extinction of most dinosaur groups. Whereas the Chicxulub impactor is acknowledged as the principal cause of these extinctions, the Deccan Traps eruptions are believed to have contributed to extinction patterns and/or enhanced ecological pressures on biota during this interval of geologic time. We present the first coupled records of biogenic carbonate clumped isotope paleothermometry and mercury concentrations as measured from a broad geographic distribution of marine mollusk fossils. These fossils preserve evidence of simultaneous increases in coastal marine temperatures and mercury concentrations at a global scale, which appear attributable to volcanic CO2 and mercury emissions. These early findings warrant further investigation with additional records of combined Late Cretaceous temperatures and mercury concentrations of biogenic carbonate.

3.
Rapid Commun Mass Spectrom ; 30(1): 199-208, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26661987

ABSTRACT

RATIONALE: The clumped isotope paleothermometer, a new proxy widely applicable in studies of paleoclimate, tectonics, and paleontology, relates the abundance of doubly substituted isotopologues of carbonate-derived CO2 to the temperature of formation of the carbonate phase. As this technique becomes more widely used, more is discovered about the effects of everyday laboratory procedures on the clumped isotopic composition of CO2 gas. METHODS: Preparation of CO2 for clumped isotope analysis requires the removal of isobaric contaminants prior to measurement, achieved dynamically by passing the CO2 through a gas chromatography column using a helium carrier gas or cryogenically pumping CO2 through a static trap filled with Porapak™ Q (PPQ) material. The stable and clumped isotopic compositions of carbonate standards prepared at PPQ trap temperatures between -40°C and -10°C were measured by isotope ratio mass spectrometry to evaluate potential artifacts introduced by the static PPQ trap method. RESULTS: The stable isotopic composition of carbonates run at temperatures below -20°C was fractionated, despite achieving >99% retrieval of gas at temperatures as cold as -30°C. The δ(13)C and δ(18)O values decreased by ~0.01 and ~0.03 ‰/(°C below -20°C). The raw Δ47 values decreased by 0.003-0.005 ‰/(°C below -20°C), but the final reference-frame-corrected values (Δ47-RFAC ) were unaffected as long as the carbonate samples and standard gases were prepared identically. CONCLUSIONS: Preparing carbonate samples for clumped isotope analysis using a PPQ trap that is too cold can result in erroneous stable isotopic compositions. New and existing labs using the static PPQ trap cleaning procedure should determine the ideal PPQ trap temperature for their particular system through monitoring not only yield through the PPQ trap, but also stable isotopic composition at various PPQ trap temperatures.


Subject(s)
Carbon Isotopes/analysis , Mass Spectrometry/methods , Oxygen Isotopes/analysis , Artifacts , Cold Temperature , Mass Spectrometry/instrumentation , Mass Spectrometry/standards
4.
Fly (Austin) ; 4(4): 312-9, 2010.
Article in English | MEDLINE | ID: mdl-20855945

ABSTRACT

Folic acid is a vitamin for probably all animals. When converted to folate forms, it is used in DNA synthesis and amino acid metabolism. Literature suggests insects must consume folates, folates do not affect others, is a toxin for some, and that a few insects synthesize it. It has been reported that Drosophila melanogaster does not consistently need dietary folate because it can synthesize it. This seems unlikely since animals generally lack this ability. More likely, folates thought to have been made by the fly came from microbial symbionts. We aimed to clarify how dietary folic acid affects fitness and development in fruit flies and whether flies may receive folates from microbial symbionts. We found larvae were more viable and developed faster with increasing dietary folic acid, with the surprising exception that larvae fed nearly-zero folic acid developed faster. Their body folate levels did not significantly differ from those that consumed up to 600 times more folic acid. However, these flies fed little folate only achieved normal body folate levels and development times when antibiotics were excluded from the diet. When flies consumed near-zero folates with antibiotics, their body folate levels decreased and development was prolonged. An assay for the endosymbiont Wolbachia in flies used to generate the experimental flies did not show presence of these bacteria. Our data suggest D. melanogaster can harbor unknown bacterial symbiont(s) that provide essential folates to their host when it is scarce in the diet, allowing the fruit fly to maintain growth and development.


Subject(s)
Drosophila melanogaster/drug effects , Folic Acid/pharmacology , Animals , Drosophila melanogaster/growth & development , Drosophila melanogaster/microbiology , Folic Acid/biosynthesis , Larva/drug effects , Larva/growth & development , Larva/microbiology , Symbiosis , Wolbachia/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...