Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Heart J ; 36(23): 1478-88, 2015 Jun 14.
Article in English | MEDLINE | ID: mdl-24950695

ABSTRACT

BACKGROUND: Myocarditis is characterized by inflammatory cell infiltration of the heart and subsequent deterioration of cardiac function. Monocytes are the most prominent population of accumulating leucocytes. We investigated whether in vivo administration of nanoparticle-encapsulated siRNA targeting chemokine (C-C motif) receptor 2 (CCR2)-a chemokine receptor crucial for leucocyte migration in humans and mice--reduces inflammation in autoimmune myocarditis. METHODS AND RESULTS: In myocardium of patients with myocarditis, CCL2 mRNA levels and CCR2(+) cells increased (P < 0.05), motivating us to pursue CCR2 silencing. Flow cytometric analysis showed that siRNA silencing of CCR2 (siCCR2) reduced the number of Ly6C(high) monocytes in hearts of mice with acute autoimmune myocarditis by 69% (P < 0.05), corroborated by histological assessment. The nanoparticle-delivered siRNA was not only active in monocytes but also in bone marrow haematopoietic progenitor cells. Treatment with siCCR2 reduced the migration of bone marrow granulocyte macrophage progenitors into the blood. Cellular magnetic resonance imaging (MRI) after injection of macrophage-avid magnetic nanoparticles detected myocarditis and therapeutic effects of RNAi non-invasively. Mice with acute myocarditis showed enhanced macrophage MRI contrast, which was prevented by siCCR2 (P < 0.05). Follow-up MRI volumetry revealed that siCCR2 treatment improved ejection fraction (P < 0.05 vs. control siRNA-treated mice). CONCLUSION: This study highlights the importance of CCR2 in the pathogenesis of myocarditis. In addition, we show that siCCR2 affects leucocyte progenitor trafficking. The data also point to a novel therapeutic strategy for the treatment of myocarditis.


Subject(s)
Autoimmune Diseases/therapy , Chemokine CCL2/genetics , Myocarditis/therapy , RNA, Small Interfering/pharmacology , Adult , Animals , Cell Movement , Chemokine CCL2/metabolism , Female , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/physiology , Humans , Magnetic Resonance Angiography , Male , Mice , Monocytes/metabolism , Nanoparticles , RNA Interference/physiology
2.
J Trace Elem Med Biol ; 28(3): 328-37, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24894442

ABSTRACT

Inorganic arsenicals are environmental toxins that have been connected with neuropathies and impaired cognitive functions. To investigate whether such substances accumulate in brain astrocytes and affect their viability and glutathione metabolism, we have exposed cultured primary astrocytes to arsenite or arsenate. Both arsenicals compromised the cell viability of astrocytes in a time- and concentration-dependent manner. However, the early onset of cell toxicity in arsenite-treated astrocytes revealed the higher toxic potential of arsenite compared with arsenate. The concentrations of arsenite and arsenate that caused within 24h half-maximal release of the cytosolic enzyme lactate dehydrogenase were around 0.3mM and 10mM, respectively. The cellular arsenic contents of astrocytes increased rapidly upon exposure to arsenite or arsenate and reached after 4h of incubation almost constant steady state levels. These levels were about 3-times higher in astrocytes that had been exposed to a given concentration of arsenite compared with the respective arsenate condition. Analysis of the intracellular arsenic species revealed that almost exclusively arsenite was present in viable astrocytes that had been exposed to either arsenate or arsenite. The emerging toxicity of arsenite 4h after exposure was accompanied by a loss in cellular total glutathione and by an increase in the cellular glutathione disulfide content. These data suggest that the high arsenite content of astrocytes that had been exposed to inorganic arsenicals causes an increase in the ratio of glutathione disulfide to glutathione which contributes to the toxic potential of these substances.


Subject(s)
Arsenates/toxicity , Arsenites/toxicity , Astrocytes/drug effects , Brain/cytology , Animals , Arsenates/metabolism , Arsenites/metabolism , Astrocytes/cytology , Astrocytes/metabolism , Cell Survival/drug effects , Cells, Cultured , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...