Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Front Hum Neurosci ; 16: 809293, 2022.
Article in English | MEDLINE | ID: mdl-35721351

ABSTRACT

Virtual reality environments offer great opportunities to study the performance of brain-computer interfaces (BCIs) in real-world contexts. As real-world stimuli are typically multimodal, their neuronal integration elicits complex response patterns. To investigate the effect of additional auditory cues on the processing of visual information, we used virtual reality to mimic safety-related events in an industrial environment while we concomitantly recorded electroencephalography (EEG) signals. We simulated a box traveling on a conveyor belt system where two types of stimuli - an exploding and a burning box - interrupt regular operation. The recordings from 16 subjects were divided into two subsets, a visual-only and an audio-visual experiment. In the visual-only experiment, the response patterns for both stimuli elicited a similar pattern - a visual evoked potential (VEP) followed by an event-related potential (ERP) over the occipital-parietal lobe. Moreover, we found the perceived severity of the event to be reflected in the signal amplitude. Interestingly, the additional auditory cues had a twofold effect on the previous findings: The P1 component was significantly suppressed in the case of the exploding box stimulus, whereas the N2c showed an enhancement for the burning box stimulus. This result highlights the impact of multisensory integration on the performance of realistic BCI applications. Indeed, we observed alterations in the offline classification accuracy for a detection task based on a mixed feature extraction (variance, power spectral density, and discrete wavelet transform) and a support vector machine classifier. In the case of the explosion, the accuracy slightly decreased by -1.64% p. in an audio-visual experiment compared to the visual-only. Contrarily, the classification accuracy for the burning box increased by 5.58% p. when additional auditory cues were present. Hence, we conclude, that especially in challenging detection tasks, it is favorable to consider the potential of multisensory integration when BCIs are supposed to operate under (multimodal) real-world conditions.

2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 6203-6206, 2021 11.
Article in English | MEDLINE | ID: mdl-34892532

ABSTRACT

Exoskeletons and prosthetic devices controlled using brain-computer interfaces (BCIs) can be prone to errors due to inconsistent decoding. In recent years, it has been demonstrated that error-related potentials (ErrPs) can be used as a feedback signal in electroencephalography (EEG) based BCIs. However, modern BCIs often take large setup times and are physically restrictive, making them impractical for everyday use. In this paper, we use a mobile and easy-to-setup EEG device to investigate whether an erroneously functioning 1-DOF exoskeleton in different conditions, namely, visually observing and wearing the exoskeleton, elicits a brain response that can be classified. We develop a pipeline that can be applied to these two conditions and observe from our experiments that there is evidence for neural responses from electrodes near regions associated with ErrPs in an environment that resembles the real world. We found that these error-related responses can be classified as ErrPs with accuracies ranging from 60% to 71%, depending on the condition and the subject. Our pipeline could be further extended to detect and correct erroneous exoskeleton behavior in real-world settings.


Subject(s)
Brain-Computer Interfaces , Exoskeleton Device , Brain , Electroencephalography , Pilot Projects
SELECTION OF CITATIONS
SEARCH DETAIL