Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
FASEB Bioadv ; 5(11): 427-452, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37936923

ABSTRACT

Biomedical sciences PhDs pursue a wide range of careers inside and outside academia. However, there is little data regarding how career interests of PhD students relate to the decision to pursue postdoctoral training or to their eventual career outcomes. Here, we present the career goals and career outcomes of 1452 biomedical sciences PhDs who graduated from Vanderbilt University between 1997 and 2021. We categorized careers using an expanded three-tiered taxonomy and flags that delineate key career milestones. We also analyzed career goal changes between matriculation and doctoral defense, and the reasons why students became more- or less-interested in research-intensive faculty careers. We linked students' career goal at doctoral defense to whether they did a postdoc, the duration of time between doctoral defense and the first non-training position, the career area of the first non-training position, and the career area of the job at 10 years after graduation. Finally, we followed individual careers for 10 years after graduation to characterize movement between different career areas over time. We found that most students changed their career goal during graduate school, declining numbers of alumni pursued postdoctoral training, many alumni entered first non-training positions in a different career area than their goal at doctoral defense, and the career area of the first non-training position was a good indicator of the job that alumni held 10 years after graduation. Our findings emphasize that students need a wide range of career development opportunities and career mentoring during graduate school to prepare them for futures in research and research-related professions.

2.
J Genet Couns ; 31(1): 9-33, 2022 02.
Article in English | MEDLINE | ID: mdl-34510635

ABSTRACT

Congenital heart disease (CHD) is an indication which spans multiple specialties across various genetic counseling practices. This practice resource aims to provide guidance on key considerations when approaching counseling for this particular indication while recognizing the rapidly changing landscape of knowledge within this domain. This resource was developed with consensus from a diverse group of certified genetic counselors utilizing literature relevant for CHD genetic counseling practice and is aimed at supporting genetic counselors who encounter this indication in their practice both pre- and postnatally.


Subject(s)
Counselors , Heart Defects, Congenital , Certification , Counseling , Counselors/psychology , Genetic Counseling/psychology , Heart Defects, Congenital/genetics , Humans
3.
Nat Commun ; 12(1): 6442, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34750360

ABSTRACT

The genetic architecture of atrial fibrillation (AF) encompasses low impact, common genetic variants and high impact, rare variants. Here, we characterize a high impact AF-susceptibility allele, KCNQ1 R231H, and describe its transcontinental geographic distribution and history. Induced pluripotent stem cell-derived cardiomyocytes procured from risk allele carriers exhibit abbreviated action potential duration, consistent with a gain-of-function effect. Using identity-by-descent (IBD) networks, we estimate the broad- and fine-scale population ancestry of risk allele carriers and their relatives. Analysis of ancestral migration routes reveals ancestors who inhabited Denmark in the 1700s, migrated to the Northeastern United States in the early 1800s, and traveled across the Midwest to arrive in Utah in the late 1800s. IBD/coalescent-based allele dating analysis reveals a relatively recent origin of the AF risk allele (~5000 years). Thus, our approach broadens the scope of study for disease susceptibility alleles to the context of human migration and ancestral origins.


Subject(s)
Atrial Fibrillation/genetics , Genetic Predisposition to Disease/genetics , KCNQ1 Potassium Channel/genetics , Mutation, Missense , Polymorphism, Single Nucleotide , Action Potentials , Alleles , Denmark , Emigrants and Immigrants , Female , Genotype , Geography , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Male , Middle Aged , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/physiology , Pedigree , Risk Factors , Utah
4.
Open Forum Infect Dis ; 8(7): ofab133, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34322558

ABSTRACT

BACKGROUND: The initial focus of the US public health response to coronavirus disease 2019 (COVID-19) was the implementation of numerous social distancing policies. While COVID-19 was the impetus for imposing these policies, it is not the only respiratory disease affected by their implementation. This study aimed to assess the impact of social distancing policies on non-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) respiratory pathogens typically circulating across multiple US states. METHODS: Linear mixed-effect models were implemented to explore the effects of 5 social distancing policies on non-SARS-CoV-2 respiratory pathogens across 9 states from January 1 through May 1, 2020. The observed 2020 pathogen detection rates were compared week by week with historical rates to determine when the detection rates were different. RESULTS: Model results indicate that several social distancing policies were associated with a reduction in total detection rate, by nearly 15%. Policies were associated with decreases in pathogen circulation of human rhinovirus/enterovirus and human metapneumovirus, as well as influenza A, which typically decrease after winter. Parainfluenza viruses failed to circulate at historical levels during the spring. The total detection rate in April 2020 was 35% less than the historical average. Many of the pathogens driving this difference fell below the historical detection rate ranges within 2 weeks of initial policy implementation. CONCLUSIONS: This analysis investigated the effect of multiple social distancing policies implemented to reduce transmission of SARS-CoV-2 on non-SARS-CoV-2 respiratory pathogens. These findings suggest that social distancing policies may be used as an impactful public health tool to reduce communicable respiratory illness.

5.
PLoS One ; 16(4): e0250767, 2021.
Article in English | MEDLINE | ID: mdl-33930062

ABSTRACT

Acute gastrointestinal infection (AGI) represents a significant public health concern. To control and treat AGI, it is critical to quickly and accurately identify its causes. The use of novel multiplex molecular assays for pathogen detection and identification provides a unique opportunity to improve pathogen detection, and better understand risk factors and burden associated with AGI in the community. In this study, de-identified results from BioFire® FilmArray® Gastrointestinal (GI) Panel were obtained from January 01, 2016 to October 31, 2018 through BioFire® Syndromic Trends (Trend), a cloud database. Data was analyzed to describe the occurrence of pathogens causing AGI across United States sites and the relative rankings of pathogens monitored by FoodNet, a CDC surveillance system were compared. During the period of the study, the number of tests performed increased 10-fold and overall, 42.6% were positive for one or more pathogens. Seventy percent of the detections were bacteria, 25% viruses, and 4% parasites. Clostridium difficile, enteropathogenic Escherichia coli (EPEC) and norovirus were the most frequently detected pathogens. Seasonality was observed for several pathogens including astrovirus, rotavirus, and norovirus, EPEC, and Campylobacter. The co-detection rate was 10.2%. Enterotoxigenic E. coli (ETEC), Plesiomonas shigelloides, enteroaggregative E. coli (EAEC), and Entamoeba histolytica were detected with another pathogen over 60% of the time, while less than 30% of C. difficile and Cyclospora cayetanensis were detected with another pathogen. Positive correlations among co-detections were found between Shigella/Enteroinvasive E. coli with E. histolytica, and ETEC with EAEC. Overall, the relative ranking of detections for the eight GI pathogens monitored by FoodNet and BioFire Trend were similar for five of them. AGI data from BioFire Trend is available in near real-time and represents a rich data source for the study of disease burden and GI pathogen circulation in the community, especially for those pathogens not often targeted by surveillance.


Subject(s)
Clinical Laboratory Techniques/methods , Cloud Computing , Gastrointestinal Diseases/diagnosis , Gastrointestinal Diseases/epidemiology , Bacteria/isolation & purification , Epidemiological Monitoring , Feces/microbiology , Gastrointestinal Diseases/microbiology , Humans , United States/epidemiology , Viruses/isolation & purification
6.
Mol Genet Genomic Med ; 9(6): e1673, 2021 06.
Article in English | MEDLINE | ID: mdl-33797204

ABSTRACT

BACKGROUND: Pathogenic variants in the L-type Ca2+ channel gene CACNA1C cause a multi-system disorder that includes severe long QT syndrome (LQTS), congenital heart disease, dysmorphic facial features, syndactyly, abnormal immune function, and neuropsychiatric disorders, collectively known as Timothy syndrome. In 2015, a variant in CACNA1C (p.R518C) was reported to cause cardiac-only Timothy syndrome, a genetic disorder with a mixed phenotype of congenital heart disease, hypertrophic cardiomyopathy (HCM), and LQTS that lacked extra-cardiac features. We have identified a family harboring the p.R518C pathogenic variant with a wider spectrum of clinical manifestations. METHODS: A four-generation family harboring the p.R518C pathogenic variant was reviewed in detail. The proband and his paternal great-uncle underwent comprehensive cardiac gene panel testing, and his remaining family members underwent cascade testing for the p.R518C pathogenic variant. RESULTS: In addition to displaying cardinal features of CACNA1C disorders including LQTS, congenital heart disease, HCM, and sudden cardiac death, family members manifested atrial fibrillation and sick sinus syndrome. CONCLUSION: Our report expands the cardiac phenotype of CACNA1C variants and reflects the variable expressivity of mutations in the L-type Ca2+ channel.


Subject(s)
Autistic Disorder/genetics , Calcium Channels, L-Type/genetics , Long QT Syndrome/genetics , Syndactyly/genetics , Adolescent , Adult , Autistic Disorder/pathology , Female , Humans , Infant , Long QT Syndrome/pathology , Male , Middle Aged , Mutation , Pedigree , Phenotype , Syndactyly/pathology
7.
Sci Transl Med ; 13(584)2021 03 10.
Article in English | MEDLINE | ID: mdl-33692131

ABSTRACT

Acute flaccid myelitis (AFM) recently emerged in the United States as a rare but serious neurological condition since 2012. Enterovirus D68 (EV-D68) is thought to be a main causative agent, but limited surveillance of EV-D68 in the United States has hampered the ability to assess their causal relationship. Using surveillance data from the BioFire Syndromic Trends epidemiology network in the United States from January 2014 to September 2019, we characterized the epidemiological dynamics of EV-D68 and found latitudinal gradient in the mean timing of EV-D68 cases, which are likely climate driven. We also demonstrated a strong spatiotemporal association of EV-D68 with AFM. Mathematical modeling suggested that the recent dominant biennial cycles of EV-D68 dynamics may not be stable. Nonetheless, we predicted that a major EV-D68 outbreak, and hence an AFM outbreak, would have still been possible in 2020 under normal epidemiological conditions. Nonpharmaceutical intervention efforts due to the ongoing COVID-19 pandemic are likely to have reduced the sizes of EV-D68 and AFM outbreaks in 2020, illustrating the broader epidemiological impact of the pandemic.


Subject(s)
Central Nervous System Viral Diseases/epidemiology , Central Nervous System Viral Diseases/virology , Enterovirus D, Human/physiology , Myelitis/epidemiology , Myelitis/virology , Neuromuscular Diseases/epidemiology , Neuromuscular Diseases/virology , Disease Susceptibility , Epidemiological Monitoring , Humans , Models, Biological , Spatio-Temporal Analysis , United States/epidemiology
8.
medRxiv ; 2021 Jan 28.
Article in English | MEDLINE | ID: mdl-32766605

ABSTRACT

The lack of active surveillance for enterovirus D68 (EV-D68) in the US has hampered the ability to assess the relationship with predominantly biennial epidemics of acute flaccid myelitis (AFM), a rare but serious neurological condition. Using novel surveillance data from the BioFire® Syndromic Trends (Trend) epidemiology network, we characterize the epidemiological dynamics of EV-D68 and demonstrate strong spatiotemporal association with AFM. Although the recent dominant biennial cycles of EV-D68 dynamics may not be stable, we show that a major EV-D68 epidemic, and hence an AFM outbreak, would still be possible in 2020 under normal epidemiological conditions. Significant social distancing due to the ongoing COVID-19 pandemic could reduce the size of an EV-D68 epidemic in 2020, illustrating the potential broader epidemiological impact of the pandemic.

9.
J Clin Virol ; 124: 104262, 2020 03.
Article in English | MEDLINE | ID: mdl-32007841

ABSTRACT

BACKGROUND: In 2014, enterovirus D68 (EV-D68) was responsible for an outbreak of severe respiratory illness in children, with 1,153 EV-D68 cases reported across 49 states. Despite this, there is no commercial assay for its detection in routine clinical care. BioFire® Syndromic Trends (Trend) is an epidemiological network that collects, in near real-time, deidentified. BioFire test results worldwide, including data from the BioFire® Respiratory Panel (RP). OBJECTIVES: Using the RP version 1.7 (which was not explicitly designed to differentiate EV-D68 from other picornaviruses), we formulate a model, Pathogen Extended Resolution (PER), to distinguish EV-D68 from other human rhinoviruses/enteroviruses (RV/EV) tested for in the panel. Using PER in conjunction with Trend, we survey for historical evidence of EVD68 positivity and demonstrate a method for prospective real-time outbreak monitoring within the network. STUDY DESIGN: PER incorporates real-time polymerase chain reaction metrics from the RPRV/EV assays. Six institutions in the United States and Europe contributed to the model creation, providing data from 1,619 samples spanning two years, confirmed by EV-D68 gold-standard molecular methods. We estimate outbreak periods by applying PER to over 600,000 historical Trend RP tests since 2014. Additionally, we used PER as a prospective monitoring tool during the 2018 outbreak. RESULTS: The final PER algorithm demonstrated an overall sensitivity and specificity of 87.1% and 86.1%, respectively, among the gold-standard dataset. During the 2018 outbreak monitoring period, PER alerted the research network of EV-D68 emergence in July. One of the first sites to experience a significant increase, Nationwide Children's Hospital, confirmed the outbreak and implemented EV-D68 testing at the institution in response. Applying PER to the historical Trend dataset to determine rates among RP tests, we find three potential outbreaks with predicted regional EV-D68 rates as high as 37% in 2014, 16% in 2016, and 29% in 2018. CONCLUSIONS: Using PER within the Trend network was shown to both accurately predict outbreaks of EV-D68 and to provide timely notifications of its circulation to participating clinical laboratories.


Subject(s)
Disease Outbreaks , Enterovirus D, Human , Enterovirus Infections/diagnosis , Enterovirus Infections/epidemiology , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/epidemiology , Algorithms , Child , Enterovirus Infections/virology , Epidemiological Monitoring , Europe/epidemiology , Humans , Respiratory Tract Infections/virology , Sensitivity and Specificity , United States/epidemiology
10.
Heart Rhythm ; 17(1): 106-112, 2020 01.
Article in English | MEDLINE | ID: mdl-31229680

ABSTRACT

BACKGROUND: The efficacy of cascade screening for the inherited heart conditions long QT syndrome (LQTS) and hypertrophic cardiomyopathy (HCM) is incompletely characterized. OBJECTIVE: The purpose of this study was to examine the use of genetic testing and yield of cascade screening across diverse regions in the United States and to evaluate obstacles to screening in multipayer systems. METHODS: An institutional review board-approved 6 United States pediatric center retrospective chart review of LQTS and HCM patients from 2008-2014 was conducted for (1) genetic test completion and results and (2) family cascade screening acceptance, methods, results, and barriers. RESULTS: The families of 315 index patients (mean age 9.0 ± 5.8 years) demonstrated a 75% (254) acceptance of cascade screening. The yield of relative screening was 39% (232/601), an average of 0.91 detected per family. Genetic testing was less utilized in HCM index patients and relatives. Screening participation was greater in families of gene-positive index patients (88%) (P <.001) compared to gene-negative patients (53%). Cascade method utilization: Cardiology-only 45%, combined genetic and cardiology 39%, and genetic only 16%. Screening yield by method: combined 57%, genetic-only 29%, and cardiology-only 20%. Family decisions were the leading barriers to cascade screening (26% lack of followthrough and 26% declined), whereas insurance (6%) was the least cited barrier. CONCLUSION: Family participation in cascade screening is high, but the greatest barriers are family mediated (declined, lack of followthrough). Positive proband genetic testing led to greater participation. Cardiology-only screening was the most utilized method, but combined cardiology and genetic screening had the highest detection.


Subject(s)
Cardiomyopathy, Hypertrophic/diagnosis , Genetic Testing/methods , Long QT Syndrome/diagnosis , Mass Screening/methods , Cardiomyopathy, Hypertrophic/genetics , Child , Female , Follow-Up Studies , Humans , Long QT Syndrome/genetics , Male , Pedigree , Phenotype , Reproducibility of Results , Retrospective Studies
11.
Am J Med Genet A ; 179(5): 792-796, 2019 05.
Article in English | MEDLINE | ID: mdl-30773818

ABSTRACT

The NONO gene encodes a nuclear protein involved in RNA metabolism. Hemizygous loss-of-function NONO variants have been associated with syndromic intellectual disability and with left ventricular noncompaction (LVNC). A two-year-old boy presented to the University of Utah's Penelope Undiagnosed Disease Program with developmental delay, nonfamilial features, relative macrocephaly, and dilated cardiomyopathy with LVNC and Ebstein anomaly. Brain MRI showed a thick corpus callosum, mild Chiari I malformation, and a flattened pituitary. Exome sequencing identified a novel intronic deletion (c.154+5_154+6delGT) in the NONO gene. Splicing studies demonstrated intron 4 read-through and the use of an alternative donor causing the frameshift p.Asn52Serfs*6. Family segregation analysis showed that the variant occurred de novo in the boy's unaffected mother. MRI and endocrine findings suggest that hypopituitarism may contribute to growth failure, abnormal thyroid hormone levels, cryptorchidism, or delayed puberty in patients with NONO-associated disease. Also, including this case LVNC has been observed in five out of eight patients, and this report also confirms an association between loss of NONO and Ebstein anomaly. In some cases, unrelated individuals share the same pathogenic NONO variants but do not all have clinically significant LVNC, suggesting that additional modifiers may contribute to cardiac phenotypes.


Subject(s)
DNA-Binding Proteins/genetics , Genes, X-Linked , Genetic Predisposition to Disease , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Mutation , Phenotype , RNA-Binding Proteins/genetics , Child, Preschool , DNA Mutational Analysis , Exome , Facies , Female , Genetic Association Studies , Genetic Loci , Humans , Magnetic Resonance Imaging , Male , Polymorphism, Single Nucleotide , Syndrome
12.
JMIR Public Health Surveill ; 4(3): e59, 2018 Jul 06.
Article in English | MEDLINE | ID: mdl-29980501

ABSTRACT

BACKGROUND: Health care and public health professionals rely on accurate, real-time monitoring of infectious diseases for outbreak preparedness and response. Early detection of outbreaks is improved by systems that are comprehensive and specific with respect to the pathogen but are rapid in reporting the data. It has proven difficult to implement these requirements on a large scale while maintaining patient privacy. OBJECTIVE: The aim of this study was to demonstrate the automated export, aggregation, and analysis of infectious disease diagnostic test results from clinical laboratories across the United States in a manner that protects patient confidentiality. We hypothesized that such a system could aid in monitoring the seasonal occurrence of respiratory pathogens and may have advantages with regard to scope and ease of reporting compared with existing surveillance systems. METHODS: We describe a system, BioFire Syndromic Trends, for rapid disease reporting that is syndrome-based but pathogen-specific. Deidentified patient test results from the BioFire FilmArray multiplex molecular diagnostic system are sent directly to a cloud database. Summaries of these data are displayed in near real time on the Syndromic Trends public website. We studied this dataset for the prevalence, seasonality, and coinfections of the 20 respiratory pathogens detected in over 362,000 patient samples acquired as a standard-of-care testing over the last 4 years from 20 clinical laboratories in the United States. RESULTS: The majority of pathogens show influenza-like seasonality, rhinovirus has fall and spring peaks, and adenovirus and the bacterial pathogens show constant detection over the year. The dataset can also be considered in an ecological framework; the viruses and bacteria detected by this test are parasites of a host (the human patient). Interestingly, the rate of pathogen codetections, on average 7.94% (28,741/362,101), matches predictions based on the relative abundance of organisms present. CONCLUSIONS: Syndromic Trends preserves patient privacy by removing or obfuscating patient identifiers while still collecting much useful information about the bacterial and viral pathogens that they harbor. Test results are uploaded to the database within a few hours of completion compared with delays of up to 10 days for other diagnostic-based reporting systems. This work shows that the barriers to establishing epidemiology systems are no longer scientific and technical but rather administrative, involving questions of patient privacy and data ownership. We have demonstrated here that these barriers can be overcome. This first look at the resulting data stream suggests that Syndromic Trends will be able to provide high-resolution analysis of circulating respiratory pathogens and may aid in the detection of new outbreaks.

13.
PLoS One ; 13(1): e0190606, 2018.
Article in English | MEDLINE | ID: mdl-29338019

ABSTRACT

There is a persistent shortage of underrepresented minority (URM) faculty who are involved in basic biomedical research at medical schools. We examined the entire training pathway of potential candidates to identify the points of greatest loss. Using a range of recent national data sources, including the National Science Foundation's Survey of Earned Doctorates and Survey of Doctoral Recipients, we analyzed the demographics of the population of interest, specifically those from URM backgrounds with an interest in biomedical sciences. We examined the URM population from high school graduates through undergraduate, graduate, and postdoctoral training as well as the URM population in basic science tenure track faculty positions at medical schools. We find that URM and non-URM trainees are equally likely to transition into doctoral programs, to receive their doctoral degree, and to secure a postdoctoral position. However, the analysis reveals that the diversions from developing a faculty career are found primarily at two clearly identifiable places, specifically during undergraduate education and in transition from postdoctoral fellowship to tenure track faculty in the basic sciences at medical schools. We suggest focusing additional interventions on these two stages along the educational pathway.


Subject(s)
Academies and Institutes/organization & administration , Biomedical Research , Cultural Diversity , Faculty/statistics & numerical data , Minority Groups/statistics & numerical data , Biology/education , Humans
14.
J Pediatr ; 167(5): 1062-6, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26323199

ABSTRACT

OBJECTIVE: To evaluate the frequency of Turner syndrome in a population-based, statewide cohort of girls with coarctation of the aorta. STUDY DESIGN: The Utah Birth Defects Network was used to ascertain a cohort of girls between 1997 and 2011 with coarctation of the aorta. Livebirths with isolated coarctation of the aorta or transverse arch hypoplasia were included and patients with complex congenital heart disease not usually seen in Turner syndrome were excluded. RESULTS: Of 244 girls with coarctation of the aorta, 77 patients were excluded, leaving a cohort of 167 girls; 86 patients (51%) had chromosomal studies and 21 (12.6%) were diagnosed with Turner syndrome. All patients were diagnosed within the first 4 months of life and 5 (24%) were diagnosed prenatally. Fifteen patients (71%) had Turner syndrome-related findings in addition to coarctation of the aorta. Girls with mosaicism were less likely to have Turner syndrome-associated findings (3/6 mosaic girls compared with 12/17 girls with non-mosaic 45,X). Twelve girls (57%) diagnosed with Turner syndrome also had a bicommissural aortic valve. CONCLUSION: At least 12.6% of girls born with coarctation of the aorta have karyotype-confirmed Turner syndrome. Such a high frequency, combined with the clinical benefits of an early diagnosis, supports genetic screening for Turner syndrome in girls presenting with coarctation of the aorta.


Subject(s)
Aortic Coarctation/complications , Turner Syndrome/complications , Adolescent , Aortic Coarctation/diagnosis , Child , Child, Preschool , Female , Genetic Testing , Humans , Incidence , Retrospective Studies , Turner Syndrome/epidemiology , Turner Syndrome/genetics , Utah/epidemiology
15.
Am J Med Genet A ; 167A(12): 2975-84, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26284702

ABSTRACT

Wolff-Parkinson-White (WPW) syndrome is a common cause of supraventricular tachycardia that carries a risk of sudden cardiac death. To date, mutations in only one gene, PRKAG2, which encodes the 5'-AMP-activated protein kinase subunit γ-2, have been identified as causative for WPW. DNA samples from five members of a family with WPW were analyzed by exome sequencing. We applied recently designed prioritization strategies (VAAST/pedigree VAAST) coupled with an ontology-based algorithm (Phevor) that reduced the number of potentially damaging variants to 10: a variant in KCNE2 previously associated with Long QT syndrome was also identified. Of these 11 variants, only MYH6 p.E1885K segregated with the WPW phenotype in all affected individuals and was absent in 10 unaffected family members. This variant was predicted to be damaging by in silico methods and is not present in the 1,000 genome and NHLBI exome sequencing project databases. Screening of a replication cohort of 47 unrelated WPW patients did not identify other likely causative variants in PRKAG2 or MYH6. MYH6 variants have been identified in patients with atrial septal defects, cardiomyopathies, and sick sinus syndrome. Our data highlight the pleiotropic nature of phenotypes associated with defects in this gene.


Subject(s)
Exome , Wolff-Parkinson-White Syndrome/genetics , AMP-Activated Protein Kinases/genetics , Adult , Cardiac Myosins/genetics , Female , Genetic Loci , Humans , Male , Myosin Heavy Chains/genetics , Pedigree , Potassium Channels, Voltage-Gated/genetics , Wolff-Parkinson-White Syndrome/etiology
16.
Pediatrics ; 136(1): e262-6, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26034244

ABSTRACT

Mutations in the gene ACTA2 are a recognized cause of aortic aneurysms with aortic dissection in adulthood. Recently, a specific mutation (Arg179His) in this gene has been associated with multisystem smooth muscle dysfunction presenting in childhood. We describe 3 patients with an R179H mutation, all of whom presented with an aneurysmal patent ductus arteriosus. Detailed information on the rate of aortic disease progression throughout childhood is provided. Death or need for ascending aortic replacement occurred in all patients. Genetic testing for ACTA2 mutations should be considered in all infants presenting with ductal aneurysms.


Subject(s)
Actins/genetics , Aortic Aneurysm, Thoracic/genetics , Aortic Dissection/genetics , DNA/genetics , Mutation , Actins/metabolism , Aortic Dissection/diagnosis , Aortic Dissection/metabolism , Aortic Aneurysm, Thoracic/diagnosis , Aortic Aneurysm, Thoracic/metabolism , DNA Mutational Analysis , Disease Progression , Female , Follow-Up Studies , Humans , Infant , Infant, Newborn , Magnetic Resonance Imaging
17.
Am J Med Genet A ; 167A(8): 1747-57, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25944730

ABSTRACT

Aortopathy can be defined as aortic dilation, aneurysm, dissection, and tortuosity. Familial aortopathy may occur secondary to fibrillin-1 (FBN1) mutations in the setting of Marfan syndrome, or may occur as a result of other genetic defects with different, but occasionally overlapping, phenotypes. Because of the phenotypic overlap and genetic heterogeneity of disorders featuring aortopathy, we developed a next generation sequencing (NGS) assay and comparative genomic hybridization (CGH) array to detect mutations in 10 genes that cause thoracic aortic aneurysms (TAAs). Here, we report on the clinical and molecular findings in 175 individuals submitted for aortopathy panel testing at ARUP laboratories. Ten genes associated with heritable aortopathies were targeted using hybridization capture prior to sequencing. NGS results were analyzed, and variants were confirmed using Sanger sequencing. Array CGH was used to detect copy-number variation. Of 175 individuals, 18 had a pathogenic mutation and 32 had a variant of uncertain significance (VUS). Most pathogenic mutations (72%) were identified in FBN1. A novel large SMAD3 duplication and FBN1 deletion were identified. Over half who had TAAs or other aortic involvement tested negative for a mutation, suggesting that additional aortopathy genes exist. We anticipate that the clinical sensitivity of at least 10.3% will rise with VUS reclassification and as additional genes are identified and included in the panel. The aortopathy NGS panel aids in the timely molecular diagnosis of individuals with disorders featuring aortopathy and guides proper treatment.


Subject(s)
Aortic Diseases/pathology , Marfan Syndrome/diagnosis , Sequence Analysis, DNA/methods , Female , Humans , Male , Marfan Syndrome/genetics , Marfan Syndrome/pathology
18.
J Neuroimmunol ; 277(1-2): 176-85, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25468275

ABSTRACT

Apolipoprotein A1 (Apo A-I), the most abundant component of high-density lipoprotein (HDL), is an anti-inflammatory molecule, yet its potential role in the pathogenesis of multiple sclerosis (MS) has not been fully investigated. In this study, Western blot analyses of human plasma showed differential Apo A-I expression in healthy controls compared to MS patients. Further, primary progressive MS patients had less plasma Apo A-I than other forms of MS. Using experimental allergic encephalomyelitis (EAE) as a model for MS, Apo A-I deficient mice exhibited worse clinical disease and more neurodegeneration concurrent with increased levels of pro-inflammatory cytokines compared to wild-type animals. These data suggest that Apo A-I plays a role in the pathogenesis of EAE, a model for MS, creating the possibility for agents that increase Apo A-I levels as potential therapies for MS.


Subject(s)
Apolipoprotein A-I/genetics , Cytokines/metabolism , Multiple Sclerosis/genetics , Multiple Sclerosis/pathology , Adult , Animals , Apolipoprotein A-I/blood , Apolipoprotein A-I/deficiency , Case-Control Studies , Disease Models, Animal , Electrophoresis, Gel, Two-Dimensional , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Evoked Potentials, Visual/genetics , Evoked Potentials, Visual/physiology , Female , Fluoresceins , Freund's Adjuvant/toxicity , Gene Expression Regulation/genetics , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Multiple Sclerosis/blood , Myelin-Oligodendrocyte Glycoprotein/toxicity , Peptide Fragments/toxicity
19.
Article in English | MEDLINE | ID: mdl-32669900

ABSTRACT

Multiple sclerosis (MS) is a complex autoimmune disease that impairs the central nervous system (CNS). The neurological disability and clinical course of the disease is highly variable and unpredictable from one patient to another. The cause of MS is still unknown, but it is thought to occur in genetically susceptible individuals who develop disease due to a nongenetic trigger, such as altered metabolism, a virus, or other environmental factors. MS patients develop progressive, irreversible, neurological disability associated with neuronal and axonal damage, collectively known as neurodegeneration. Neurodegeneration was traditionally considered as a secondary phenomenon to inflammation and demyelination. However, recent data indicate that neurodegeneration develops along with inflammation and demyelination. Thus, MS is increasingly recognized as a neurodegenerative disease triggered by an inflammatory attack of the CNS. While both inflammation and demyelination are well described and understood cellular processes, neurodegeneration might be defined by a diverse pool of any of the following: neuronal cell death, apoptosis, necrosis, and virtual hypoxia. In this review, we present multiple theories and supporting evidence that identify common biological processes that contribute to neurodegeneration in MS.

20.
PLoS One ; 6(10): e26047, 2011.
Article in English | MEDLINE | ID: mdl-22039434

ABSTRACT

The ideal clinical diagnostic system should deliver rapid, sensitive, specific and reproducible results while minimizing the requirements for specialized laboratory facilities and skilled technicians. We describe an integrated diagnostic platform, the "FilmArray", which fully automates the detection and identification of multiple organisms from a single sample in about one hour. An unprocessed biologic/clinical sample is subjected to nucleic acid purification, reverse transcription, a high-order nested multiplex polymerase chain reaction and amplicon melt curve analysis. Biochemical reactions are enclosed in a disposable pouch, minimizing the PCR contamination risk. FilmArray has the potential to detect greater than 100 different nucleic acid targets at one time. These features make the system well-suited for molecular detection of infectious agents. Validation of the FilmArray technology was achieved through development of a panel of assays capable of identifying 21 common viral and bacterial respiratory pathogens. Initial testing of the system using both cultured organisms and clinical nasal aspirates obtained from children demonstrated an analytical and clinical sensitivity and specificity comparable to existing diagnostic platforms. We demonstrate that automated identification of pathogens from their corresponding target amplicon(s) can be accomplished by analysis of the DNA melting curve of the amplicon.


Subject(s)
Respiratory Tract Infections/microbiology , Reverse Transcriptase Polymerase Chain Reaction/methods , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...