Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38597995

ABSTRACT

The cell-surface receptor tyrosine kinase c-mesenchymal-epithelial transition factor (c-Met) is overexpressed in a wide range of solid tumors, making it an appropriate target antigen for the development of anticancer therapeutics. Various antitumor c-Met-targeting therapies (including monoclonal antibodies [mAbs] and tyrosine kinases) have been developed for the treatment of c-Met-overexpressing tumors, most of which have so far failed to enter the clinic because of their efficacy and complications. Antibody-drug conjugates (ADCs), a new emerging class of cancer therapeutic agents that harness the target specificity of mAbs to deliver highly potent small molecules to the tumor with the minimal damage to normal cells, could be an attractive therapeutic approach to circumvent these limitations in patients with c-Met-overexpressing tumors. Of great note, there are currently nine c-Met-targeting ADCs being examined in different phases of clinical studies as well as eight preclinical studies for treating various solid tumors. The purpose of this study is to present a broad overview of clinical- and preclinical-stage c-Met-targeting ADCs.

2.
Sci Rep ; 14(1): 7527, 2024 03 29.
Article in English | MEDLINE | ID: mdl-38553531

ABSTRACT

Hepatocellular carcinoma (HCC) ranks among the most prevalent cancers and accounts for a significant proportion of cancer-associated deaths worldwide. This disease, marked by multifaceted etiology, often poses diagnostic challenges. Finding a reliable and non-invasive diagnostic method seems to be necessary. In this study, we analyzed the gene expression profiles of 20 HCC patients, 12 individuals with chronic hepatitis, and 15 healthy controls. Enrichment analysis revealed that platelet aggregation, secretory granule lumen, and G-protein-coupled purinergic nucleotide receptor activity were common biological processes, cellular components, and molecular function in HCC and chronic hepatitis B (CHB) compared to healthy controls, respectively. Furthermore, pathway analysis demonstrated that "estrogen response" was involved in the pathogenesis of HCC and CHB conditions, while, "apoptosis" and "coagulation" pathways were specific for HCC. Employing computational feature selection and logistic regression classification, we identified candidate genes pivotal for diagnostic panel development and evaluated the performance of these panels. Subsequent machine learning evaluations assessed these panels' performance in an independent cohort. Remarkably, a 3-marker panel, comprising RANSE2, TNF-α, and MAP3K7, demonstrated the best performance in qRT-PCR-validated experimental data, achieving 98.4% accuracy and an area under the curve of 1. Our findings highlight this panel's promising potential as a non-invasive approach not only for detecting HCC but also for distinguishing HCC from CHB patients.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis B, Chronic , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/diagnosis , Liver Neoplasms/genetics , Leukocytes, Mononuclear/metabolism , Biomarkers/metabolism , Transcriptome , Hepatitis B, Chronic/complications , Hepatitis B, Chronic/genetics , Hepatitis B, Chronic/diagnosis , Biomarkers, Tumor/metabolism , Hepatitis B virus/genetics
4.
Cytokine ; 175: 156495, 2024 03.
Article in English | MEDLINE | ID: mdl-38184893

ABSTRACT

Individuals with Coronavirus Disease 2019 (COVID-19) may show no symptoms to moderate or severe complications. This variation may be due to differences in the strength of the immune response, including a delayed interferon (IFN) response in asymptomatic patients and higher IFN levels in severe patients. Some long non-coding RNAs (lncRNAs), as regulators of the IFN pathway, may contribute to the emergence of different COVID-19 symptoms. This study aimed to comparatively investigate the relationship between lncRNAs (eosinophil granule ontogeny transcript (EGOT), negative regulator of antiviral response (NRAV), and negative regulator of interferon response (NRIR)), alongside interferon-stimulated genes (ISGs) like ISG-15 and interferon-induced transmembrane protein 3 (IFITM3) in COVID-19 patients with asymptomatic, moderate, and severe symptoms. Buffy coat samples were collected from 17 asymptomatic, 23 moderate, 22 severe patients, and 44 healthy controls. Quantitative real-time PCR was utilized to determine the expression levels. In a comparison between COVID-19 patients and healthy individuals, higher expression levels of EGOT and NRAV were observed in severe and moderate patients. NRIR expression was increased across all patient groups. Meanwhile, ISG15 expression decreased in all patient groups, and the moderate group showed a significant decrease in IFITM3 expression. Comparing COVID-19 patient groups, EGOT expression was significantly higher in moderate COVID-19 patients compared to asymptomatic patients. NRAV was higher in moderate and severe patients compared to asymptomatic. NRIR levels did not differ significantly between the COVID-19 patient groups. ISG15 was higher in moderate and severe patients compared to asymptomatic. IFITM3 expression was significantly higher in severe patients compared to the moderate group. In severe COVID-19 patients, EGOT expression was positively correlated with NRAV levels. EGOT and NRAV showed a significant positive correlation in asymptomatic patients, and both were positively correlated with IFITM3 expression. This study suggests that EGOT, NRAV, NRIR, ISG15, and IFITM3 may serve as diagnostic biomarkers for COVID-19. The lncRNA NRAV may be a good biomarker in a prognostic panel between asymptomatic and severe patients in combination with other high-sensitivity biomarkers. EGOT, NRAV, and ISG15 could also be considered as specific biomarkers in a prognostic panel comparing asymptomatic and moderate patients with other high-sensitivity biomarkers.


Subject(s)
COVID-19 , RNA, Long Noncoding , Humans , Biomarkers , COVID-19/genetics , Cytokines/genetics , Cytokines/metabolism , Interferons/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA-Binding Proteins/genetics , Ubiquitins/genetics , Ubiquitins/metabolism
5.
Heliyon ; 9(11): e21154, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37928018

ABSTRACT

Nowadays, anti-TNF therapy remarkably improves the medical management of ulcerative colitis (UC), but approximately 40 % of patients do not respond to this treatment. In this study, we used 79 anti-TNF-naive patients with moderate-to-severe UC from four cohorts to discover alternative therapeutic targets and develop a personalized medicine approach that can diagnose UC non-responders (UCN) prior to receiving anti-TNF therapy. To this end, two microarray data series were integrated to create a discovery cohort with 35 UC samples. A comprehensive gene expression and functional analysis was performed and identified 313 significantly altered genes, among which IL6 and INHBA were highlighted as overexpressed genes in the baseline mucosal biopsies of UCN, whose cooperation may lead to a decrease in the Tregs population. Besides, screening the abundances of immune cell subpopulations showed neutrophils' accumulation increasing the inflammation. Furthermore, the correlation of KRAS signaling activation with unresponsiveness to anti-TNF mAb was observed using network analysis. Using 50x repeated 10-fold cross-validation LASSO feature selection and a stack ensemble machine learning algorithm, a five-mRNA prognostic panel including IL13RA2, HCAR3, CSF3, INHBA, and MMP1 was introduced that could predict the response of UC patients to anti-TNF antibodies with an average accuracy of 95.3 %. The predictive capacity of the introduced biomarker panel was also validated in two independent cohorts (44 UC patients). Moreover, we presented a distinct immune cell landscape and gene signature for UCN to anti-TNF drugs and further studies should be considered to make this predictive biomarker panel and therapeutic targets applicable in the clinical setting.

6.
Inflamm Bowel Dis ; 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37855715

ABSTRACT

BACKGROUND: Inflammatory bowel disease (IBD) is a complex gastrointestinal disease with 2 main subtypes of Crohn's disease (CD) and ulcerative colitis (UC), whose diagnosis mainly depends on the medical history, clinical symptoms, endoscopic, histologic, radiological, and serological findings. Extracellular vesicles (EVs) are now considered an additional mechanism for intercellular communication, allowing cells to exchange biomolecules. Long noncoding RNAs (lncRNAs) that are enriched in EVs have been defined as an ideal diagnostic biomarker for diseases. In this study, we investigated the expression differences of 5 lncRNAs in tissue and plasma EVs of active IBD patients compared with patients in the remission phase and healthy controls to introduce an EV-lncRNA as a noninvasive IBD diagnostic biomarker. METHODS: Twenty-two active IBD patients, 14 patients in the remission phase, 10 active rheumatoid arthritis (RA) patients, 14 irritable bowel syndrome (IBS) patients, and 22 healthy individuals were recruited in the discovery cohort. In addition, 16 patients with active IBD, 16 healthy controls, 10 inactive IBD patients, 12 active RA patients, and 14 IBS patients were also included in the validation cohort. The expression levels of 5 lncRNAs in tissue and EV-plasma were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR) . Machine learning and receiver operating characteristic (ROC) curve analysis were performed to investigate the distinguishing ability of the candidate biomarkers. RESULTS: While the expression levels of lncRNAs CDKN2B-AS1, GAS5, and TUG1 were significantly downregulated, lncRNAs H19 and CRNDE were overexpressed in active IBD lesions. Expression of H19 was detected in plasma EVs whose isolation had been confirmed via dynamic light scattering, microscopy images, and western blotting. The classification results demonstrated the excellent ability of H19 in distinguishing IBD/active from IBD/remission, healthy control, RA, and IBS (area under the ROC curve = 0.95, 0.97,1, and 0.97 respectively). CONCLUSIONS: Our study suggests that circulating EV-lncRNA H19 exhibited promising potential for the diagnosis of active IBD.


The upregulation of lncRNA H19 in active IBD tissues and plasma extracellular vesicles indicated the possible association of H19 with the disease activity. In addition, the high sensitivity and specificity of this marker proposed it as a potential biomarker for the diagnosis of IBD patients.

7.
Life Sci ; 319: 121506, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36858311

ABSTRACT

Considering the significant limitations of conventional 2D cell cultures and tissue in vitro models, creating intestinal organoids has burgeoned as an ideal option to recapitulate the heterogeneity of the native intestinal epithelium. Intestinal organoids can be developed from either tissue-resident adult stem cells (ADSs) or pluripotent stem cells (PSCs) in both forms induced PSCs and embryonic stem cells. Here, we review current advances in the development of intestinal organoids that have led to a better recapitulation of the complexity, physiology, morphology, function, and microenvironment of the intestine. We discuss current applications of intestinal organoids with an emphasis on disease modeling. In particular, we point out recent studies on SARS-CoV-2 infection in human intestinal organoids. We also discuss the less explored application of intestinal organoids in epigenetics by highlighting the role of epigenetic modifications in intestinal development, homeostasis, and diseases, and subsequently the power of organoids in mirroring the regulatory role of epigenetic mechanisms in these conditions and introducing novel predictive/diagnostic biomarkers. Finally, we propose 3D organoid models to evaluate the effects of novel epigenetic drugs (epi-drugs) on the treatment of GI diseases where epigenetic mechanisms play a key role in disease development and progression, particularly in colorectal cancer treatment and epigenetically acquired drug resistance.


Subject(s)
COVID-19 , Gastrointestinal Diseases , Humans , COVID-19/genetics , SARS-CoV-2 , Intestines , Organoids , Intestinal Mucosa
8.
Mol Ther ; 31(7): 1874-1903, 2023 07 05.
Article in English | MEDLINE | ID: mdl-36950736

ABSTRACT

Antibody-drug conjugates (ADCs) are a promising class of cancer biopharmaceuticals that exploit the specificity of a monoclonal antibody (mAb) to selectively deliver highly cytotoxic small molecules to targeted cancer cells, leading to an enhanced therapeutic index through increased antitumor activity and decreased off-target toxicity. ADCs hold great promise for the treatment of patients with human epidermal growth factor receptor 2 (HER2)-positive breast cancer after the approval and tremendous success of trastuzumab emtansine and trastuzumab deruxtecan, representing a turning point in both HER2-positive breast cancer treatment and ADC technology. Additionally and importantly, a total of 29 ADC candidates are now being investigated in different stages of clinical development for the treatment of HER2-positive breast cancer. The purpose of this review is to provide an insight into the ADC field in cancer treatment and present a comprehensive overview of ADCs approved or under clinical investigation for the treatment of HER2-positive breast cancer.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Immunoconjugates , Humans , Female , Breast Neoplasms/drug therapy , Trastuzumab/pharmacology , Trastuzumab/therapeutic use , Antineoplastic Agents/therapeutic use , Ado-Trastuzumab Emtansine/therapeutic use , Receptor, ErbB-2/metabolism , Antibodies, Monoclonal/therapeutic use , Immunoconjugates/therapeutic use
9.
Prog Neurobiol ; 225: 102437, 2023 06.
Article in English | MEDLINE | ID: mdl-36931589

ABSTRACT

A large number of people worldwide suffer from visual impairment. However, most available therapies rely on impeding the development of a particular eye disorder. Therefore, there is an increasing demand for effective alternative treatments, specifically regenerative therapies. Extracellular vesicles, including exosomes, ectosomes, or microvesicles, are released by cells and play a potential role in regeneration. Following an introduction to EV biogenesis and isolation methods, this integrative review provides an overview of our current knowledge about EVs as a communication paradigm in the eye. Then, we focused on the therapeutic applications of EVs derived from conditioned medium, biological fluid, or tissue and highlighted some recent developments in strategies to boost the innate therapeutic potential of EVs by loading various kinds of drugs or being engineered at the level of producing cells or EVs. Challenges faced in the development of safe and effective translation of EV-based therapy into clinical settings for eye diseases are also discussed to pave the road toward reaching feasible regenerative therapies required for eye-related complications.


Subject(s)
Exosomes , Extracellular Vesicles , Humans
10.
BMC Microbiol ; 23(1): 77, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36941573

ABSTRACT

BACKGROUND: Autophagy is an important part of pathogenesis of IBD. Thiopurines such as azathioprine (AZA) are approved drugs for clinical practices in IBD patients. Besides, as an escape strategy, Toxoplasma gondii can use the mTORC1 complex to inactivate autophagy. METHODS: In this study, we investigated whether T. gondii tachyzoites may modulate autophagy and interfere the effects of azathioprine in IBD treatment. PMA-activated human monocyte cell line (THP-1) was infected with fresh T. gondii RH tachyzoites. After 5 h of infection, the cells were treated with AZA for 6 h. The expression of atg5, atg7, atg12, lc3b, and ß-actin (BACT) genes was evaluated using quantitative real-time PCR. To analyze the phosphorylation of ribosomal protein S6 (rpS6), western blot using specific primary antibodies was performed. RESULTS: The results of real-time PCR revealed that AZA, T. gondii tachyzoites, and a combination of AZA and T. gondii tachyzoites upregulated atg5 gene for 4.297-fold (P-value = 0.014), 2.49-fold (P-value = 0.006), and 4.76-fold (P-value = 0.001), respectively. The atg7 gene showed significant upregulation (2.272-fold; P-value = 0.014) and (1.51-fold; P-value = 0.020) in AZA and AZA / T. gondii, respectively. The expression of atg12 gene was significantly downregulated in AZA and T. gondii tachyzoites for (8.85-fold; P-value = 0.004) and (2.005-fold; P-value = 0.038), respectively, but upregulated in T. gondii/AZA (1.52-fold; P-value = 0.037). In addition, the lc3b gene was only significantly changed in AZA / T. gondii (3.028-fold; P-value = 0.001). Western blot analysis showed that T. gondii tachyzoites significantly phosphorylated rpS6, and tachyzoites did not interfere the effects of AZA to phosphorylate the rpS6. CONCLUSION: Taken together, although AZA and T. gondii similarly affects the expression levels of atg5, atg7, and atg12, but T. gondii does not seem to modulate the effects of AZA via mTORC functions.


Subject(s)
Inflammatory Bowel Diseases , Toxoplasma , Humans , Toxoplasma/genetics , Azathioprine/pharmacology , Monocytes , Cell Line
11.
Exp Biol Med (Maywood) ; 248(8): 665-676, 2023 04.
Article in English | MEDLINE | ID: mdl-36775873

ABSTRACT

Despite the extensive body of research, understanding the exact molecular mechanisms governing inflammatory bowel diseases (IBDs) still demands further investigation. Transforming growth factor-ß1 (TGF-ß1) signaling possesses a multifacial effect on a broad range of context-dependent cellular responses. However, long-term TGF-ß1 activity may trigger epithelial-mesenchymal transition (EMT), followed by fibrosis. This study aimed to determine the role of epithelial TGF-ß1 signaling in inflammatory bowel disease (IBD) pathogenesis. The expression of TGF-ß1 signaling components and EMT-related and epithelial tight junction markers was examined in IBD patients (n = 60) as well as LPS-induced Caco-2/RAW264.7 co-culture model using quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting, and immunofluorescence staining. Furthermore, the effect of A83-01, as a TGF-ß receptor I (TßRI) inhibitor, on the inflamed epithelial cells was evaluated in vitro. To evaluate the cytotoxic effects of the TßRI inhibitor, a cell viability assay was performed by the MTS method. Considering the activation of canonical and non-canonical TGF-ß1 signaling pathways in IBD patients, expression results indicated that administering A83-01 in inflamed Caco-2 cells substantially blocked the expression level of TGF-ß1, SMAD4, and PI3K and the phosphorylation of p-SMAD2/3, p-AKT, and p-RPS6 as well as prevented downregulation of LncGAS5 and LncCDKN2B. Further analysis revealed that the inhibition of TGF-ß1 signaling in inflamed epithelial cells by the small molecule could suppress the EMT-related markers as well as improve the expression of epithelial adherens and tight junctions. Collectively, these findings indicated that the inhibition of the TGF-ß1 signaling could suppress the induction of EMT in inflamed epithelial cells as well as exert a protective effect on preserving tight junction integrity. There is a pressing need to determine the exact cellular mechanisms by which TGF-ß1 exerts its effect on IBD pathogenesis.


Subject(s)
Inflammatory Bowel Diseases , Transforming Growth Factor beta1 , Humans , Transforming Growth Factor beta1/metabolism , Epithelial-Mesenchymal Transition/physiology , Caco-2 Cells , Epithelial Cells/metabolism , Receptors, Transforming Growth Factor beta/metabolism
12.
Cell Biol Int ; 47(5): 969-980, 2023 May.
Article in English | MEDLINE | ID: mdl-36655489

ABSTRACT

The activation of hepatic stellate cells is the primary function of facilitating liver fibrosis. Interfering with the coordinators of different signaling pathways in activated hepatic stellate cells (aHSCs) could be a potential approach in ameliorating liver fibrosis. Regarding the illustrated anti-fibrotic effect of imatinib in liver fibrosis, we investigated the imatinib's potential role in inhibiting HSC activation through miR-124 and its interference with the STAT3/hepatic leukemia factor (HLF)/IL-6 circuit. The anti-fibrotic effect of imatinib was investigated in the LX-2 cell line and carbon tetrachloride (CCl4 )-induced Sprague-Dawley rat. The expression of IL-6, STAT3, HLF, miR-124, and α-smooth muscle actin (α-SMA) were quantified by quantitative real-time PCR (qRT-PCR) and the protein level of α-SMA and STAT3 was measured by western blot analysis both in vitro and in vivo. The LX-2 cells were subjected to immunocytochemistry (ICC) for α-SMA expression. After administering imatinib in the liver fibrosis model, histopathological examinations were done, and hepatic function serum markers were checked. Imatinib administration alleviated mentioned liver fibrosis markers. The expression of miR-124 was downregulated, while IL-6/HLF/STAT3 circuit agents were upregulated in vitro and in vivo. Notably, imatinib intervention decreased the expression of IL-6, STAT3, and HLF. Elevated expression of miR-124 suppressed the expression of STAT3 and further inhibited HSCs activation. Our results demonstrated that imatinib not only ameliorated hepatic fibrosis through tyrosine kinase inhibitor (TKI) activity but also interfered with the miR-124 and STAT3/HLF/IL-6 pathway. Considering the important role of miR-124 in regulating liver fibrosis and HSCs activation, imatinib may exert its anti-fibrotic activity through miR-124.


Subject(s)
Interleukin-6 , MicroRNAs , Rats , Animals , Imatinib Mesylate/pharmacology , Interleukin-6/metabolism , Hepatic Stellate Cells/metabolism , Rats, Sprague-Dawley , MicroRNAs/metabolism , Liver Cirrhosis/pathology , Carbon Tetrachloride
13.
Biochim Biophys Acta Gene Regul Mech ; 1866(1): 194903, 2023 03.
Article in English | MEDLINE | ID: mdl-36538966

ABSTRACT

BACKGROUND: Efficient differentiation of mesenchymal stem cells (MSCs) into a desired cell lineage remains challenging in cell-based therapy and regenerative medicine. Numerous efforts have been made to efficiently promote differentiation of MSCs into osteoblast lineage. Accordingly, epigenetic signatures emerge as a key conductor of cell differentiation. Among them, Enhancer of Zeste Homolog 2 (EZH2), a histone methyltransferase appears to suppress osteogenesis. Curcumin is an osteoinductive natural polyphenol compound which supposedly modulates epigenetic mechanisms. Hence, the current study aims to address the role of the EZH2 epigenetic factor in osteogenic activity of MSCs after Curcumin treatment. METHODS: The effect of Curcumin on viability and osteogenic differentiation was evaluated at different time points in vitro. The expression level of EZH2 was assessed using quantitative real-time polymerase chain reaction (qRT-PCR) after 14 and 21 days. RESULTS: MTT results showed no cytotoxic effects at concentrations of 10 and 15 µM of Curcumin and cells survived up to 70 % at all time-points. qRT-PCR results demonstrated that Curcumin significantly enhanced the expression levels of osteogenic markers that included Runx2, Osterix, Collagen type I, Osteopontin and Osteocalcin at day 21. CONCLUSIONS: Interestingly, we observed that the expression level of the EZH2 gene was downregulated in the presence of Curcumin compared to the control group during osteogenesis. This study confirmed that Curcumin acts as an epigenetic switch to regulate osteoblast differentiation specifically through the EZH2 suppression.


Subject(s)
Curcumin , Mesenchymal Stem Cells , Humans , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Osteogenesis/genetics , Curcumin/pharmacology , Curcumin/metabolism , Histone Methyltransferases/metabolism , Cell Differentiation/genetics , Epigenesis, Genetic
14.
Redox Biol ; 59: 102563, 2023 02.
Article in English | MEDLINE | ID: mdl-36493512

ABSTRACT

BACKGROUND: The imbalance of redox homeostasis induces hyper-inflammation in viral infections. In this study, we explored the redox system signature in response to SARS-COV-2 infection and examined the status of these extracellular and intracellular signatures in COVID-19 patients. METHOD: The multi-level network was constructed using multi-level data of oxidative stress-related biological processes, protein-protein interactions, transcription factors, and co-expression coefficients obtained from GSE164805, which included gene expression profiles of peripheral blood mononuclear cells (PBMCs) from COVID-19 patients and healthy controls. Top genes were designated based on the degree and closeness centralities. The expression of high-ranked genes was evaluated in PBMCs and nasopharyngeal (NP) samples of 30 COVID-19 patients and 30 healthy controls. The intracellular levels of GSH and ROS/O2• - and extracellular oxidative stress markers were assayed in PBMCs and plasma samples by flow cytometry and ELISA. ELISA results were applied to construct a classification model using logistic regression to differentiate COVID-19 patients from healthy controls. RESULTS: CAT, NFE2L2, SOD1, SOD2 and CYBB were 5 top genes in the network analysis. The expression of these genes and intracellular levels of ROS/O2• - were increased in PBMCs of COVID-19 patients while the GSH level decreased. The expression of high-ranked genes was lower in NP samples of COVID-19 patients compared to control group. The activity of extracellular enzymes CAT and SOD, and the total oxidant status (TOS) level were increased in plasma samples of COVID-19 patients. Also, the 2-marker panel of CAT and TOS and 3-marker panel showed the best performance. CONCLUSION: SARS-COV-2 disrupts the redox equilibrium in immune cells and the upper respiratory tract, leading to exacerbated inflammation and increased replication and entrance of SARS-COV-2 into host cells. Furthermore, utilizing markers of oxidative stress as a complementary validation to discriminate COVID-19 from healthy controls, seems promising.


Subject(s)
COVID-19 , Humans , COVID-19/genetics , SARS-CoV-2/metabolism , Reactive Oxygen Species/metabolism , Leukocytes, Mononuclear/metabolism , Oxidation-Reduction , Inflammation
15.
Mol Med ; 28(1): 86, 2022 08 03.
Article in English | MEDLINE | ID: mdl-35922752

ABSTRACT

BACKGROUND: Regardless of improvements in controlling the COVID-19 pandemic, the lack of comprehensive insight into SARS-COV-2 pathogenesis is still a sophisticated challenge. In order to deal with this challenge, we utilized advanced bioinformatics and machine learning algorithms to reveal more characteristics of SARS-COV-2 pathogenesis and introduce novel host response-based diagnostic biomarker panels. METHODS: In the present study, eight published RNA-Seq datasets related to whole-blood (WB) and nasopharyngeal (NP) swab samples of patients with COVID-19, other viral and non-viral acute respiratory illnesses (ARIs), and healthy controls (HCs) were integrated. To define COVID-19 meta-signatures, Gene Ontology and pathway enrichment analyses were applied to compare COVID-19 with other similar diseases. Additionally, CIBERSORTx was executed in WB samples to detect the immune cell landscape. Furthermore, the optimum WB- and NP-based diagnostic biomarkers were identified via all the combinations of 3 to 9 selected features and the 2-phases machine learning (ML) method which implemented k-fold cross validation and independent test set validation. RESULTS: The host gene meta-signatures obtained for SARS-COV-2 infection were different in the WB and NP samples. The gene ontology and enrichment results of the WB dataset represented the enhancement in inflammatory host response, cell cycle, and interferon signature in COVID-19 patients. Furthermore, NP samples of COVID-19 in comparison with HC and non-viral ARIs showed the significant upregulation of genes associated with cytokine production and defense response to the virus. In contrast, these pathways in COVID-19 compared to other viral ARIs were strikingly attenuated. Notably, immune cell proportions of WB samples altered in COVID-19 versus HC. Moreover, the optimum WB- and NP-based diagnostic panels after two phases of ML-based validation included 6 and 8 markers with an accuracy of 97% and 88%, respectively. CONCLUSIONS: Based on the distinct gene expression profiles of WB and NP, our results indicated that SARS-COV-2 function is body-site-specific, although according to the common signature in WB and NP COVID-19 samples versus controls, this virus also induces a global and systematic host response to some extent. We also introduced and validated WB- and NP-based diagnostic biomarkers using ML methods which can be applied as a complementary tool to diagnose the COVID-19 infection from non-COVID cases.


Subject(s)
COVID-19 , Biomarkers , COVID-19/diagnosis , COVID-19/genetics , COVID-19 Testing , Humans , Pandemics , SARS-CoV-2 , Transcriptome
16.
Toxicol In Vitro ; 82: 105382, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35569705

ABSTRACT

Inflammatory bowel disease (IBD) is a debilitating and incurable inflammatory disorder. Despite its increasing prevalence, the underlying pathogenic mechanisms of IBD have not been fully clarified. In addition to the regulatory role of Sonic Hedgehog (SHH) signaling in the maintenance of gut homeostasis, its involvement in development of inflammatory disorders and organ fibrosis has also been reported. Here, we investigated the role of SHH signaling in IBD and examined the molecular mechanisms targeted by the SHH signaling blockade. In addition to increased inflammatory responses and induced Epithelial-mesenchymal transition (EMT) process, SHH signaling activity also increased in active lesions of IBD patients. These findings were similar to what was observed in the LPS-induced Caco2-RAW264.7 co-culture model. Inhibition of SHH signaling in the intestinal epithelial cells using SHH inhibitors influenced inflammatory responses through decreased expression of inflammatory cytokines. Moreover, treatment of differentiated Caco2 cells with SHH signaling inhibitors prevented the overexpression of EMT markers and downregulation of epithelial adherens and tight junctions in inflammatory conditions. This study demonstrated that the inhibition of SHH signaling by small molecules might have therapeutic benefit in IBD, and provided compelling experimental evidence that SHH signaling inhibitors can impose anti-inflammatory effects in intestinal epithelial cells while preserving their epithelial characteristics by restricting the induction of EMT.


Subject(s)
Epithelial-Mesenchymal Transition , Inflammatory Bowel Diseases , Caco-2 Cells , Hedgehog Proteins/metabolism , Humans , Inflammation , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/pathology
17.
Cell Biosci ; 12(1): 4, 2022 Jan 04.
Article in English | MEDLINE | ID: mdl-34983649

ABSTRACT

Although sex hormones play a key role in sex differences in susceptibility, severity, outcomes, and response to therapy of different diseases, sex chromosomes are also increasingly recognized as an important factor. Studies demonstrated that the Y chromosome is not a 'genetic wasteland' and can be a useful genetic marker for interpreting various male-specific physiological and pathophysiological characteristics. Y chromosome harbors male­specific genes, which either solely or in cooperation with their X-counterpart, and independent or in conjunction with sex hormones have a considerable impact on basic physiology and disease mechanisms in most or all tissues development. Furthermore, loss of Y chromosome and/or aberrant expression of Y chromosome genes cause sex differences in disease mechanisms. With the launch of the human proteome project (HPP), the association of Y chromosome proteins with pathological conditions has been increasingly explored. In this review, the involvement of Y chromosome genes in male-specific diseases such as prostate cancer and the cases that are more prevalent in men, such as cardiovascular disease, neurological disease, and cancers, has been highlighted. Understanding the molecular mechanisms underlying Y chromosome-related diseases can have a significant impact on the prevention, diagnosis, and treatment of diseases.

18.
Aging Dis ; 12(8): 1964-1976, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34881080

ABSTRACT

Alzheimer's disease (AD) is the leading cause of dementia that has remained a major medical, sociocultural and economical challenge globally. Previously developed treatments like anticholinesterase inhibitors (AChEIs) and N-methyl-D-aspartate receptor (NMDAR) antagonists only provide short-term symptomatic improvement and do not prevent progression. Repeated setbacks and failures over the past 25 years in AD clinical trials have hindered efforts to develop effective AD treatments. Fortunately, Aducanumab, a specific anti-amyloid ß antibody, has shown promising clinical results and was recently approved by the Food and Drug Administration (FDA) through an accelerated approval pathway. This has raised hopes for AD patients; however post-approval trials are necessary to estimate the true scope of its clinical benefits. We have reviewed several AD clinical studies and summarized the experience to date with Aducanumab and two other potential AD drugs including Zagotenemab (an anti-tau antibody) and Pioglitazone (nuclear Peroxisome-Proliferator Activated Receptor γ (PPARγ) agonist). These have shown mixed results so far and the next few years will be critical to elucidate and interpret their broad long-term protective effects. A concerted effort is required to understand and strengthen the translation of pre-clinical findings from these drugs to routine clinical practice.

19.
Iran Biomed J ; 25(4): 226-42, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34217155

ABSTRACT

Viruses are obligatory intracellular parasites that use cell proteins to take the control of the cell functions in order to accomplish their life cycle. Studying the viral-host interactions would increase our knowledge of the viral biology and mechanisms of pathogenesis. Studies on pathogenesis mechanisms of lyssaviruses, which are the causative agents of rabies, have revealed some important host protein partners for viral proteins, especially for most studied species, i.e. Rabies virus. In this review article, the key physical lyssavirus-host protein interactions, their contributions to rabies infection, and their exploitation are discussed to improve the knowledge about rabies pathogenesis.


Subject(s)
Host Microbial Interactions/physiology , Lyssavirus/metabolism , Rabies virus/metabolism , Rabies/metabolism , Animals , Humans , Phagocytosis/physiology , Protein Binding/physiology , Rabies/transmission
20.
Expert Rev Mol Diagn ; 21(9): 939-962, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34308738

ABSTRACT

INTRODUCTION: Extracellular vesicles (EVs) play an important role in cell-cell communication and regulation of various cellular functions under physiological and pathophysiological conditions through transferring their cargo to recipient cells. Molecular constituents of EVs are a fingerprinting profile of secreting cells which can be used as promising prognostic, diagnostic, and drug-response biomarkers in clinical settings. AREAS COVERED: The present study provides a brief introduction about the biology of EVs and reviews methodologies used for EV isolation and characterization as well as high-throughput strategies to analyze EV contents. Furthermore, this review highlights the importance and unique role of EVs in the development and progression of gastrointestinal (GI) diseases, especially GI cancers, and then discusses their potential use, particularly those isolated from body fluids, in diagnosis and prognosis of GI diseases. EXPERT OPINION: In-depth analysis of EV content can lead to the identification of new potential biomarkers for early diagnosis and prognosis prediction of GI diseases. The use of a more targeted approach by establishing more reproducible and standardized methods to decrease variations and obtain desired EV population as well as revisiting large pools of identified biomarkers and their evaluation in larger patient cohorts can result in the introduction of more reliable biomarkers in clinic.


Subject(s)
Body Fluids , Extracellular Vesicles , Gastrointestinal Diseases , Biomarkers , Gastrointestinal Diseases/diagnosis , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...