Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38330807

ABSTRACT

The false codling moth (FCM), Thaumatotibia leucotreta, is a major quarantine pest native to Africa. Physical postharvest phytosanitary measures such as cold and heat treatments are championed to control its spread to new regions. However, the molecular changes that T. leucotreta undergoes as it attempts to adjust to its surroundings during the treatments and withstand the extreme temperatures remain largely unknown. The current study employs RNA-seq using the next-generation Illumina HiSeq platform to produce transcriptome profiles for differential gene expression analysis of T. leucotreta larvae under thermal stress. The transcriptome assembly analysis revealed 226,067 transcripts, clustering into 127,018 unigenes. In comparison to the 25 °C treated group, 874, 91, 159, and 754 individual differentially expressed genes (DEGs) co-regulated at -10, 0, 40, and 50 °C, respectively were discovered. Annotation of the DEGs by gene ontology (GO) revealed several genes, previously implicated in low and high-temperature stresses, including heat shock proteins, cytochrome P450, cuticle proteins, odorant binding proteins, and immune system genes. Kyoto Encyclopedia of Genes and Genomics (KEGG) classification analysis revealed that substantive DEGs were those involved in metabolic pathways such as thiamine, purine, folate, and glycerolipid metabolism pathways. The RT-qPCR validation of several significantly up- and down-regulated DEGs showed congruence between RNA-seq and qPCR data. This baseline study lays a foundation for future research into the molecular mechanisms underlying T. leucotreta's cold/heat tolerance by providing a thorough differential gene expression analysis that has identified multiple genes that may be associated with the insect's ability to withstand cold and heat.


Subject(s)
Gene Expression Profiling , Moths , Transcriptome , Animals , Moths/genetics , Cold Temperature , Insect Proteins/genetics , Hot Temperature , Larva/genetics , Larva/growth & development
2.
Pest Manag Sci ; 78(10): 4324-4332, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35730382

ABSTRACT

BACKGROUND: The western flower thrips, Frankliniella occidentalis, is a quarantine pest of French beans that requires phytosanitary treatment to meet quarantine requirements for strict lucrative markets. In this study, the efficacy of hot water treatment against F. occidentalis eggs and its effects on the postharvest physicochemical quality parameters of French beans was evaluated. RESULTS: The immersion time of 8.01 min (95% critical limits CL 7.77-8.24) was predicted by the probit model as the minimum time required to achieve a 99.9968% control level. Confirmatory tests with a large number of F. occidentalis eggs were performed to validate the estimated time to achieve probit-9 control level, and there were no survivors from the 50 103 eggs treated. Likewise, none of the 55 364 eggs exposed to 45 ± 0.2 °C for 7 min (observational time) survived. The effect of the treatment schedule on French beans quality parameters was assessed and there were no differences in weight loss, moisture content, total soluble solids, titratable acidity, pH, and reducing sugars between treated and untreated samples. CONCLUSION: Our results indicate that hot water treatment (at 45 ± 0.2 °C for a duration of 8.01 min is an effective phytosanitary treatment for the control of Frankliniella occidentalis on French beans, with no significant impact on pods quality. © 2022 Society of Chemical Industry.


Subject(s)
Phaseolus , Thysanoptera , Water Purification , Animals , Flowers
3.
Insects ; 12(12)2021 Nov 29.
Article in English | MEDLINE | ID: mdl-34940157

ABSTRACT

Mango production and trade in sub-Saharan Africa is hampered by direct damage and the high quarantine status of B. dorsalis and the paucity of effective post-harvest phytosanitary treatments. The current study reports the development of a quarantine treatment protocol using hot water to disinfest B. dorsalis and assess its effect on cv. Tommy Atkins mango quality. We first determined the development of the eggs and all larval stages of B. dorsalis in cv. Tommy Atkins mango and used the information to establish a time-mortality relationship of the immature stages after subjecting infested fruits to a regimen of eight, time instances of hot water at 46.1 °C. Using probit analysis, we estimated the minimum time required to achieve 99.9968% mortality of each stage. Our results indicate that the egg was the least heat tolerant, followed by the first, second, and third instar. The time required to achieve 99.9968% control of the third instar in cv. Tommy Atkins mango (400-600 g) was determined to be 72.63 min (95% Cl: 70.32-74.95). In the confirmatory trials, the hot water treatment schedule of 46.1 °C/72.63 min was validated, and none of the 59,120 most heat-tolerant individuals treated survived. Further, there were no significant differences between hot water-treated and untreated mangoes recorded in weight loss, fruit firmness, pH, total soluble solids, moisture content, and titratable acidity eleven days post-treatment. These findings demonstrate an effectively optimum post-harvest disinfestation treatment against B. dorsalis in cv. Tommy Atkins mango that should be adopted commercially to facilitate access to profitable but strict export markets globally.

4.
Insects ; 12(9)2021 Aug 29.
Article in English | MEDLINE | ID: mdl-34564214

ABSTRACT

Aleyrodes proletella causes severe economic damage to several Brassica crops. Its naturally occurring enemies often immigrate late in the season or appear in low numbers on cabbage. This field study aims to permanently increase the local abundance of A. proletella's natural enemies by providing the non-pest whitefly Aleyrodes lonicerae as an alternative and overwintering host/prey. Therefore, the population dynamics of natural enemies on different perennial herbaceous plants pre-infested with A. lonicerae were determined at two field locations over two winter periods. Most A. lonicerae colonized (on average 166.22 puparia per m²) and overwintered (342.19 adults per m²) on wood avens Geum urbanum. Furthermore, the abundance of A. proletella main parasitoid Encarsia tricolor (28.50 parasitized puparia per m²) and spiders (12.13 per m²) was 3-74 times and 3-14 times higher, respectively, on G. urbanum compared to the other experimental plants. Conclusively, G. urbanum pre-infested with A. lonicerae permanently promoted natural enemies of A. proletella by serving as shelter, reproduction, and overwintering habitat. A potential implementation of G. urbanum in conservation biological control strategies (e.g., tailored flower strips, hedgerows) against A. proletella are discussed and suggestions for future research are given.

5.
Insects ; 11(7)2020 Jul 09.
Article in English | MEDLINE | ID: mdl-32659926

ABSTRACT

The western flower thrips (Frankliniella occidentalis) is a serious pest in horticulture, feeding on leaf tissue and floral resources. Blue and yellow sticky traps are commonly used for monitoring and control in greenhouses. The mechanisms underlying the color preferences are largely unknown. The use of light-emitting diodes (LEDs) is a promising approach to increase the attractiveness of visual traps and to study the color choice behavior in insects. The color preferences of F. occidentalis were systematically investigated in a series of choice experiments with several LEDs from the ultraviolet (UV) and visible spectral range. Blue LEDs were most attractive, followed by green, while only a moderate attractiveness of UV was observed. Blue and green were identified as two separate attractive ranges. When light from blue and green LEDs was mixed, the attractiveness decreased compared to its single components. In conclusion, F. occidentalis exhibits two different wavelength specific behaviors towards blue and green. Compelling indications are provided that these behaviors are controlled by two photoreceptors maximally sensitive in the blue and green range with an inhibitory chromatic interaction between both. Since the known UV sensitive photoreceptor could be confirmed, a trichromatic photoreceptor setup is suggested for F. occidentalis. For advanced plant protection strategies, the results offer several opportunities to optimize monitoring or even develop mass trapping devices.

6.
Insects ; 11(1)2020 Jan 17.
Article in English | MEDLINE | ID: mdl-31963455

ABSTRACT

The cabbage whitefly Aleyrodes proletella (L.) (Hemiptera: Aleyrodidae) is an important pest of a wide range of vegetable Brassicas. Since the control of this pest is still challenging, new approaches such as the use of resistant cultivars are required. For this, we screened 16 commercialised Brussels sprout cultivars for resistance against this species. Antibiosis was tested with no-choice experiments in a climate chamber, using reproduction, mortality, longevity, developmental time and weight as parameters. Antixenosis was screened in three choice experiments with circular design in a greenhouse to detect cultivar preferences. A field trial with both antibiosis and antixenosis tests was done to verify results under natural conditions. Finally, for several cultivars, also the leaf glucosinolate concentrations were analysed. Cabbage whiteflies showed on certain cultivars significantly increased mortality, prolonged developmental times and reduced weights. Besides, some cultivars were significantly less infested. However, the incidence of antibiosis and antixenosis as well as the glucosinolate patterns were partly inconsistent. Although a number of moderately resistant cultivars could be identified, the detected resistance is certainly not strong and consistent enough as an exclusive measure of a plant protection strategy but might become a component of a multi-layered strategy against cabbage whiteflies.

7.
Curr Issues Mol Biol ; 30: 89-106, 2019.
Article in English | MEDLINE | ID: mdl-30070653

ABSTRACT

After replanting apple (Malus domestica Borkh.) on the same site severe growth suppressions, and a decline in yield and fruit quality are observed in all apple producing areas worldwide. The causes of this complex phenomenon, called apple replant disease (ARD), are only poorly understood up to now which is in part due to inconsistencies in terms and methodologies. Therefore we suggest the following definition for ARD: ARD describes a harmfully disturbed physiological and morphological reaction of apple plants to soils that faced alterations in their (micro-) biome due to the previous apple cultures. The underlying interactions likely have multiple causes that extend beyond common analytical tools in microbial ecology. They are influenced by soil properties, faunal vectors, and trophic cascades, with genotype-specific effects on plant secondary metabolism, particularly phytoalexin biosynthesis. Yet, emerging tools allow to unravel the soil and rhizosphere (micro-) biome, to characterize alterations of habitat quality, and to decipher the plant reactions. Thereby, deep insights into the reactions taking place at the root rhizosphere interface will be gained. Counteractions are suggested, taking into account that culture management should emphasize on improving soil microbial and faunal diversity as well as habitat quality rather than focus on soil disinfection.


Subject(s)
Disease Susceptibility , Malus/physiology , Plant Diseases/microbiology , Bacteria , Fungi , Host-Pathogen Interactions , Microbial Interactions , Microbiota , Plant Roots/microbiology , Plant Roots/physiology , Soil Microbiology
8.
Front Plant Sci ; 9: 1785, 2018.
Article in English | MEDLINE | ID: mdl-30574155

ABSTRACT

In agricultural ecosystems, insect pests, pathogens, weather patterns, and reduced soil fertility pose major challenges to crop productivity and are responsible for significant yield losses worldwide. Iris yellow spot virus (IYSV) vectored by Thrips tabaci Lindeman, is a major hindrance to onion production in eastern Africa. Control measures often rely on insecticides with deleterious effects. Endophytes are one key alternative as they can play important roles in mediating induced systemic resistance. Hence, we examined the potential effect of endophytic fungus Hypocrea lixii (F3ST1) on feeding and replication of IYSV on endophyte-colonized (E+) and endophyte-free (E-) onion plants. For more precise assessment, replication was also tested using leaf disk bioassays and individual thrips. The number of feeding punctures was significantly lower in E+ as compared to E- plants. Disease level was significantly lower in E+ as compared to E- plants for four weeks post-exposure to thrips. IYSV replication was reduced by 2.5-fold in endophytic treatment on both whole plant and leaf disk assays. Thrips tabaci showed 2 times higher feeding activities on endophyte-free onion leaf disks as compared to the endophyte-inoculated leaf disks. Our results suggest potential utility of the endophytes to reduce feeding damage and virus infection on onion plants. Further studies should be conducted to elucidate the secondary metabolites involved in such endophyte-thrips-virus mediated interaction and determine whether the interactions extend for this and other onion varieties and viruses under field conditions.

9.
Insects ; 6(1): 279-96, 2015 Mar 23.
Article in English | MEDLINE | ID: mdl-26463079

ABSTRACT

Western flower thrips (WFT), Frankliniella occidentalis (Pergande), is an important pest of vegetable crops worldwide and has developed resistance to many insecticides. The predatory mites Neoseiulus (=Amblyseius) cucumeris (Oudemans), the entomopathogenic fungus Metarhizium anisopliae (Metsch.), and an insecticide (imidacloprid) were tested for their efficacy to reduce WFT population density and damage to French bean (Phaseolus vulgaris L.) pods under field conditions in two planting periods. Metarhizium anisopliae was applied as a foliar spray weekly at a rate of one litre spray volume per plot while imidacloprid was applied as a soil drench every two weeks at a rate of two litres of a mixture of water and imidacloprid per m². Neoseiulus cucumeris was released every two weeks on plant foliage at a rate of three mites per plant. Single and combined treatment applications reduced WFT population density by at least three times and WFT damage to French bean pods by at least 1.7 times compared with untreated plots. The benefit-cost ratios in management of WFT were profitable with highest returns realized on imidacloprid treated plots. The results indicate that M. anisopliae, N. cucumeris, and imidacloprid have the potential for use in developing an integrated pest management program against WFT on French beans.

10.
PLoS One ; 9(9): e108242, 2014.
Article in English | MEDLINE | ID: mdl-25254657

ABSTRACT

Endophytic fungi, which live within host plant tissues without causing any visible symptom of infection, are important mutualists that mediate plant-herbivore interactions. Thrips tabaci (Lindeman) is one of the key pests of onion, Allium cepa L., an economically important agricultural crop cultivated worldwide. However, information on endophyte colonization of onions, and their impacts on the biology of thrips feeding on them, is lacking. We tested the colonization of onion plants by selected fungal endophyte isolates using two inoculation methods. The effects of inoculated endophytes on T. tabaci infesting onion were also examined. Seven fungal endophytes used in our study were able to colonize onion plants either by the seed or seedling inoculation methods. Seed inoculation resulted in 1.47 times higher mean percentage post-inoculation recovery of all the endophytes tested as compared to seedling inoculation. Fewer thrips were observed on plants inoculated with Clonostachys rosea ICIPE 707, Trichoderma asperellum M2RT4, Trichoderma atroviride ICIPE 710, Trichoderma harzianum 709, Hypocrea lixii F3ST1 and Fusarium sp. ICIPE 712 isolates as compared to those inoculated with Fusarium sp. ICIPE 717 and the control treatments. Onion plants colonized by C. rosea ICIPE 707, T. asperellum M2RT4, T. atroviride ICIPE 710 and H. lixii F3ST1 had significantly lower feeding punctures as compared to the other treatments. Among the isolates tested, the lowest numbers of eggs were laid by T. tabaci on H. lixii F3ST1 and C. rosea ICIPE 707 inoculated plants. These results extend the knowledge on colonization of onions by fungal endophytes and their effects on Thrips tabaci.


Subject(s)
Endophytes , Herbivory , Onions/microbiology , Thysanoptera/physiology , Animals , Molecular Sequence Data , Seedlings/microbiology , Seeds/microbiology
11.
Am Nat ; 179(1): 124-31, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22173465

ABSTRACT

Seed dispersal by ants (myrmecochory) is widespread, and seed adaptations to myrmecochory are common, especially in the form of fatty appendices (elaiosomes). In a recent study, slugs were identified as seed dispersers of myrmecochores in a central European beech forest. Here we used 105 beech forest sites to test whether myrmecochore presence and abundance is related to ant or gastropod abundance and whether experimentally exposed seeds are removed by gastropods. Myrmecochorous plant cover was positively related to gastropod abundance but was negatively related to ant abundance. Gastropods were responsible for most seed removal and elaiosome damage, whereas insects (and rodents) played minor roles. These gastropod effects on seeds were independent of region or forest management. We suggest that terrestrial gastropods can generally act as seed dispersers of myrmecochorous plants and even substitute myrmecochory, especially where ants are absent or uncommon.


Subject(s)
Anemone/physiology , Ants/physiology , Asarum/physiology , Gastropoda/physiology , Seed Dispersal , Animals , Ecosystem , Fagus , Feeding Behavior , Food Chain , Germany , Population Dynamics , Seasons , Species Specificity
12.
Exp Appl Acarol ; 34(3-4): 239-61, 2004.
Article in English | MEDLINE | ID: mdl-15651523

ABSTRACT

The efficiency of a natural enemy combination compared to a single species release for the control of western flower thrips (WFT) Frankliniella occidentalis (Pergande) on cucumber plants was investigated. Since a large part of F occidentalis seems to enter the soil passage, a joint release of the plant-inhabiting predatory mite Amblyseius cucumeris (Oudemans) that feeds on thrips first-instar larvae and the soil-dwelling predatory mite Hypoaspis aculeifer (Canestrini) that preys on thrips pupae in the ground might offer a promising approach for a holistic control strategy. Therefore, two sets of experiments were conducted in cooperation with a commercial vegetable grower where the plants in plots were infested with a defined number of larval and adult F occidentalis. Two species of natural enemies were released either synchronously or solely, and their efficacy was compared to control plots devoid of antagonists. In both experiments, the predatory mites were released twice with a density of 46 A. cucumeris/m2, and 207 H. aculeifer/m2 (low-density) in the first experiment and 528 H. aculeifer/m2 (high-density) in the second one. Population growth of all arthropod species on the plants and in the soil was quantified at regular intervals and included all soil-dwelling mites and alternative preys present in the substrate. The results showed that H. aculeifer alone had a significant impact on thrips population development only when released at high-densities, but competence was lower compared to the other antagonist treatments. The impact of A. cucumeris alone and A. cucumeris & H. aculeifer combined was similar. Thus, the pooled exploitation of natural enemies did not boost thrips control compared to the single species application of A. cucumeris (non-additive effect), which could be explained by resource competition between both predatory mite species. Species number and population size in the soil of the experimental plots both showed a high variability, a possible consequence of their interaction with released soil-dwelling predatory H. aculeifer mites. The impact of resource competition and presence of alternative preys on thrips biological control is exhaustively discussed. From our study, we can extract the subsequent conclusions: (1) the combined use of H. aculeifer and A. cucumeris cannot increase thrips control on cucumber compared to the release of A. cucumeris alone, but the overall reliability of thrips biological control might be enhanced, (2) the availability of alternative preys seemed to affect the thrips predation rate of H. aculeifer, and (3) the impact of naturally occurring soil predatory mites on the control of WFT seemed to be partial.


Subject(s)
Mites/physiology , Pest Control, Biological/methods , Animals , Ecosystem , Host-Parasite Interactions , Larva , Plants/parasitology , Population Density , Soil/parasitology , Time Factors
13.
Exp Appl Acarol ; 31(1-2): 1-14, 2003.
Article in English | MEDLINE | ID: mdl-14756396

ABSTRACT

In biological control programmes, the two predatory soil mites Hypoaspis aculeifer and H. miles are often applied against soil-borne pests like mushroom flies, springtails and mites. Although the mites show high consumption rates on varying prey types in Petri dish experiments and in greenhouses, their overall efficiency is sometimes limited. We hypothesized that intraspecific interactions, like cannibalism, could contribute to this decreased competence. Therefore, experiments were conducted to show the propensity of H. aculeifer and H. miles to cannibalise. Adult mites and nymphs were introduced as predators with conspecific eggs, larvae, nymphs, adult females or males as prey and the number of killed individuals was recorded. Additionally, the oviposition rate on conspecific prey was quantified and the correlation with the number of prey consumed was calculated to assess the influence of cannibalism on egg production. The results illustrate that cannibalism occurs infrequently in both Hypoaspis spp., the only exception being H. aculeifer nymphs, which cannibalised one conspecific egg per day. Moreover, cannibalism never occurred in the presence of alternative prey. Oviposition rate decreased during the experiment in both species but it was positively correlated with the cannibalism rate only for H. aculeifer. The benefit of cannibalism for populations of H. aculeifer and H. miles is discussed.


Subject(s)
Mites/physiology , Predatory Behavior/physiology , Rhabditoidea/physiology , Animals , Cannibalism , Female , Larva , Male , Mites/classification , Ovum , Reproduction/physiology , Rhabditoidea/growth & development , Soil/parasitology , Species Specificity
14.
Am Nat ; 156(3): 257-265, 2000 Sep.
Article in English | MEDLINE | ID: mdl-29587506

ABSTRACT

Avoiding detection by parasitoids is nearly impossible for most leafminers in their visually striking mines, and they often suffer from a high mortality rate by a great variety of parasitoid species. The leafminer-parasitoid interaction bears a strong resemblance to the princess-monster game developed in game theory, in which a "monster" (parasitoid) selects an optimal search strategy to capture the "princess" (leafminer), while the princess selects an optimal strategy to hide from the monster. This article attempts to illustrate and to quantify the additional complexity that occurs when the princess can modify the arena in which the monster searches. Feeding activity of the leafminer Phyllonorycter malella creates feeding windows, which are spots on the mine. Its main parasitoid Sympiesis sericeicornis is able to insert its ovipositor only through these feeding windows. Parasitism risk depends both on the leafminer-feeding pattern, which determines the structure of the arena in which the parasitoid searches, and on the position of the leafminer within the mine. The adaptive value of observed patterns of mine development and leafminer behavior is evaluated by comparing them to predictions from a simulation model of random patterns and leafminer positions. The leafminer creates a heterogeneous environment by leaving a central area of uneaten tissue. This area acts as a protecting shield and greatly diminishes the risk of parasitism. Hence, by controlling the structure of the arena in which the princess-monster game is played, the leafminer defines some of the rules of the game.

SELECTION OF CITATIONS
SEARCH DETAIL
...