Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Philos Trans A Math Phys Eng Sci ; 380(2235): 20210258, 2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36088918

ABSTRACT

The retreat of Arctic sea ice is enabling increased ocean wave activity at the sea ice edge, yet the interactions between surface waves and sea ice are not fully understood. Here, we examine in situ observations of wave spectra spanning 2012-2021 in the western Arctic marginal ice zone (MIZ). Swells exceeding 30 cm are rarely observed beyond 100 km inside the MIZ. However, local wind waves are observed in patches of open water amid partial ice cover during the summer. These local waves remain fetch-limited between ice floes with heights less than 1 m. To investigate these waves at climate scales, we conduct experiments varying wave attenuation and generation in ice with a global model including coupled interactions between waves and sea ice. A weak high-frequency attenuation rate is required to simulate the local waves in observations. The choices of attenuation scheme and wind input in ice have a remarkable impact on the extent of wave activity across ice-covered oceans, particularly in the Antarctic. As well as demonstrating the need for stronger constraints on wave attenuation, our results suggest that further attention should be directed towards locally generated wind waves and their role in sea ice evolution. This article is part of the theme issue 'Theory, modelling and observations of marginal ice zone dynamics: multidisciplinary perspectives and outlooks'.

2.
Philos Trans A Math Phys Eng Sci ; 380(2235): 20210267, 2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36088930

ABSTRACT

Perspectives are discussed on future directions for the field of marginal ice zone (MIZ) dynamics, based on the extraordinary progress made over the past decade in its theory, modelling and observations. Research themes are proposed that would shift the field's focus towards the broader implications of MIZ dynamics in the climate system. In particular, pathways are recommended for research that highlights the impacts of trends in the MIZ on the responses of Arctic and Antarctic sea ice to climate change. This article is part of the theme issue 'Theory, modelling and observations of marginal ice zone dynamics: multidisciplinary perspectives and outlooks'.


Subject(s)
Climate Change , Ice Cover , Antarctic Regions , Arctic Regions
3.
Proc Math Phys Eng Sci ; 476(2242): 20200360, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33223937

ABSTRACT

A solution to the problem of water-wave scattering by a semi-infinite submerged thin elastic plate, which is either porous or non-porous, is presented using the Wiener-Hopf technique. The derivation of the Wiener-Hopf equation is rather different from that which is used traditionally in water-waves problems, and it leads to the required equations directly. It is also shown how the solution can be computed straightforwardly using Cauchy-type integrals, which avoids the need to find the roots of the highly non-trivial dispersion equations. We illustrate the method with some numerical computations, focusing on the evolution of an incident wave pulse which illustrates the existence of two transmitted waves in the submerged plate system. The effect of the porosity is studied, and it is shown to influence the shorter-wavelength pulse much more strongly than the longer-wavelength pulse.

4.
Philos Trans A Math Phys Eng Sci ; 376(2129)2018 Sep 28.
Article in English | MEDLINE | ID: mdl-30126908

ABSTRACT

Three-dimensional scattering of ocean surface waves in the marginal ice zone (MIZ) is determined in the time domain. The solution is found using spectral analysis of the linear operator for the Boltzmann equation. The method to calculate the scattering kernel that arises in the Boltzmann model from the single-floe solution is also presented along with new identities for the far-field scattering, which can be used to validate the single-floe solution. The spectrum of the operator is computed, and it is shown to have a universal structure under a special non-dimensionalization. This universal structure implies that under a scaling wave scattering in the MIZ has similar properties for a large range of ice types and wave periods. A scattering theory solution using fast Fourier transforms is given to find the solution for directional incident wave packets. A numerical solution method is also given using the split-step method and this is used to validate the spectral solution. Numerical calculations of the evolution of a typical wave field are presented.This article is part of the theme issue 'Modelling of sea-ice phenomena'.

5.
Proc Math Phys Eng Sci ; 474(2209): 20170223, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29434500

ABSTRACT

The propagation of flexural gravity waves, routinely used to model wave interaction with sea ice, is studied, including the effect of compression and current. A number of significant and surprising properties are shown to exist. The occurrence of blocking above a critical value of compression is illustrated. This is analogous to propagation of surface gravity waves in the presence of opposing current and light wave propagation in the curved space-time near a black hole, therefore providing a novel system for studying analogue gravity. Between the blocking and buckling limit of the compressive force, the dispersion relation possesses three positive real roots, contrary to an earlier observation of having a single positive real root. Negative energy waves, in which the phase and group velocity point in opposite directions, are also shown to exist. In the presence of an opposing current and certain critical ranges of compressive force, the second blocking point shifts from the positive to the negative branch of the dispersion relation. Such a shift is known as the Hawking effect from the analogous behaviour in the theory of relativity which leads to Hawking radiation. The theory we develop is illustrated with simulations of linear waves in the time domain.

6.
Nature ; 509(7502): 604-7, 2014 May 29.
Article in English | MEDLINE | ID: mdl-24870546

ABSTRACT

The propagation of large, storm-generated waves through sea ice has so far not been measured, limiting our understanding of how ocean waves break sea ice. Without improved knowledge of ice breakup, we are unable to understand recent changes, or predict future changes, in Arctic and Antarctic sea ice. Here we show that storm-generated ocean waves propagating through Antarctic sea ice are able to transport enough energy to break sea ice hundreds of kilometres from the ice edge. Our results, which are based on concurrent observations at multiple locations, establish that large waves break sea ice much farther from the ice edge than would be predicted by the commonly assumed exponential decay. We observed the wave height decay to be almost linear for large waves--those with a significant wave height greater than three metres--and to be exponential only for small waves. This implies a more prominent role for large ocean waves in sea-ice breakup and retreat than previously thought. We examine the wider relevance of this by comparing observed Antarctic sea-ice edge positions with changes in modelled significant wave heights for the Southern Ocean between 1997 and 2009, and find that the retreat and expansion of the sea-ice edge correlate with mean significant wave height increases and decreases, respectively. This includes capturing the spatial variability in sea-ice trends found in the Ross and Amundsen-Bellingshausen seas. Climate models fail to capture recent changes in sea ice in both polar regions. Our results suggest that the incorporation of explicit or parameterized interactions between ocean waves and sea ice may resolve this problem.


Subject(s)
Ice Cover , Tidal Waves , Antarctic Regions , Climate , Models, Theoretical , Oceans and Seas , Seawater/analysis
SELECTION OF CITATIONS
SEARCH DETAIL