Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Immunol Rev ; 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733141

ABSTRACT

Well known functions of adipose tissue include energy storage, regulation of thermogenesis, and glucose homeostasis-each of which are associated with the metabolic functions of fat. However, adipose tissues also have important immune functions. In this issue of Immunological Reviews, we present a series of articles that highlight the immune functions of adipose tissue, including the roles of specialized adipose-resident immune cells and fat-associated lymphoid structures. Importantly, immune cell functions in adipose tissues are often linked to the metabolic functions of adipocytes and vice versa. These reciprocal interactions and how they influence both immune and metabolic functions will be discussed in each article. In the first article, Wang et al.,11 discuss adipose-associated macrophages and how obesity and metabolism impact their phenotype and function. Several articles in this issue discuss T cells as either contributors to, or regulators of, inflammatory responses in adipose tissues. Valentine and Nikolajczyk12 provide insights into the role of T cells in obesity-associated inflammation and their contribution to metabolic dysfunction, whereas an article from Kallies and Vasanthakumar13 and another from Elkins and Li14 describe adipose-associated Tregs and how they help prevent inflammation and maintain metabolic homeostasis. Articles from Okabe35 as well as from Daley and Benezech15 discuss the structure and function of fat-associated lymphoid clusters (FALCs) that are prevalent in some adipose tissues and support local immune responses to pathogens, gut-derived microbes and fat-associated antigens. Finally, an article from Meher and McNamara16 describes how innate-like B1 cells in adipose tissues regulate cardiometabolic disease. Importantly, these articles highlight the physical and functional attributes of adipose tissues that are different between mice and humans, the metabolic and immune differences between various adipose depots in the body and the differences in immune cells, adipose tissues and metabolic functions between the sexes. At the end of this preface, we highlight how these differences are critically important for our understanding of anti-tumor immunity to cancers that metastasize to a specific example of visceral adipose tissue, the omentum. Together, these articles identify some unanswered mechanistic questions that will be important to address for a better understanding of immunity in adipose tissues.

2.
Gynecol Oncol ; 185: 83-94, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38377762

ABSTRACT

OBJECTIVE: Advanced-stage high-grade serous ovarian cancer (HGSOC) remains a deadly gynecologic malignancy with high rates of disease recurrence and limited, effective therapeutic options for patients. There is a significant need to better stratify HGSOC patients into platinum refractory (PRF) vs. sensitive (PS) cohorts at baseline to improve therapeutic responses and survival outcomes for PRF HGSOC. METHODS: We performed NanoString for GeoMx Digital Spatial Profile (G-DSP) multiplex protein analysis on PRF and PS tissue microarrays (TMAs) to study the bidirectional communication of cancer cells with immune cells in the tumor microenvironment (TME) of HGSOC. We demonstrate robust stratification of PRF and PS tumors at baseline using multiplex spatial proteomic biomarkers with implications for tailoring subsequent therapy. RESULTS: PS patients had elevated apoptotic and anti-tumor immune profiles, while PRF patients had dual AKT1 and WNT signaling with immunosuppressive profiles. We found that dual activity of AKT1 and WNT signaling supported the exclusion of immune cells, specifically tumor infiltrating lymphocytes (TILs), from the TME in PRF tumors, and this was not observed in PS tumors. The exclusion of immune cells from the TME of PRF tumors corresponded to abnormal endothelial cell structure in tumors with dual AKT1 and WNT signaling activity. CONCLUSIONS: We believe our findings provide improved understanding of tumor-immune crosstalk in HGSOC TME highlighting the importance of the relationship between AKT and WNT pathways, immune cell function, and platinum response in HGSOC.

3.
Sci Immunol ; 8(84): eadc9081, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37327322

ABSTRACT

Multiple mechanisms restrain inflammation in neonates, most likely to prevent tissue damage caused by overly robust immune responses against newly encountered pathogens. Here, we identify a population of pulmonary dendritic cells (DCs) that express intermediate levels of CD103 (CD103int) and appear in the lungs and lung-draining lymph nodes of mice between birth and 2 weeks of age. CD103int DCs express XCR1 and CD205 and require expression of the transcription factor BATF3 for development, suggesting that they belong to the cDC1 lineage. In addition, CD103int DCs express CCR7 constitutively and spontaneously migrate to the lung-draining lymph node, where they promote stromal cell maturation and lymph node expansion. CD103int DCs mature independently of microbial exposure and TRIF- or MyD88-dependent signaling and are transcriptionally related to efferocytic and tolerogenic DCs as well as mature, regulatory DCs. Correlating with this, CD103int DCs show limited ability to stimulate proliferation and IFN-γ production by CD8+ T cells. Moreover, CD103int DCs acquire apoptotic cells efficiently, in a process that is dependent on the expression of the TAM receptor, Mertk, which drives their homeostatic maturation. The appearance of CD103int DCs coincides with a temporal wave of apoptosis in developing lungs and explains, in part, dampened pulmonary immunity in neonatal mice. Together, these data suggest a mechanism by which DCs sense apoptotic cells at sites of noninflammatory tissue remodeling, such as tumors or the developing lungs, and limit local T cell responses.


Subject(s)
CD8-Positive T-Lymphocytes , Pneumonia , Mice , Animals , c-Mer Tyrosine Kinase/metabolism , Dendritic Cells , Lung , Apoptosis
4.
Cancer Immunol Res ; 10(5): 641-655, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35263766

ABSTRACT

Tumors that metastasize in the peritoneal cavity typically end up in the omental adipose tissue, a particularly immune-suppressive environment that includes specialized adipose-resident regulatory T cells (Treg). Tregs rapidly accumulate in the omentum after tumor implantation and potently suppress antitumor immunity. However, it is unclear whether these Tregs are recruited from the circulation or derived from preexisting adipose-resident Tregs by clonal expansion. Here we show that Tregs in tumor-bearing omenta predominantly have thymus-derived characteristics. Moreover, naïve tumor antigen-specific CD4+ T cells fail to differentiate into Tregs in tumor-bearing omenta. In fact, Tregs derived from the pretumor repertoire are sufficient to suppress antitumor immunity and promote tumor growth. However, tumor implantation in the omentum does not promote Treg clonal expansion, but instead leads to increased clonal diversity. Parabiosis experiments show that despite tissue-resident (noncirculating) characteristics of omental Tregs in naïve mice, tumor implantation promotes a rapid influx of circulating Tregs, many of which come from the spleen. Finally, we show that newly recruited Tregs rapidly acquire characteristics of adipose-resident Tregs in tumor-bearing omenta. These data demonstrate that most Tregs in omental tumors are recruited from the circulation and adapt to their environment by altering their homing, transcriptional, and metabolic properties.


Subject(s)
Neoplasms , Omentum , Adipose Tissue/metabolism , Adipose Tissue/pathology , Animals , Mice , Neoplasms/pathology , Omentum/pathology , Spleen/pathology , T-Lymphocytes, Regulatory
5.
Gynecol Oncol ; 164(1): 170-180, 2022 01.
Article in English | MEDLINE | ID: mdl-34844776

ABSTRACT

BACKGROUND: Progress in immunotherapy use for gynecologic malignancies is hampered by poor tumor antigenicity and weak T cell infiltration of the tumor microenvironment (TME). Wnt/ß-catenin pathway modulation demonstrated patient benefit in clinical trials as well as enhanced immune cell recruitment in preclinical studies. The purpose of this study was to characterize the pathways by which Wnt/ß-catenin modulation facilitates a more immunotherapy-favorable TME. METHODS: Human tumor samples and in vivo patient-derived xenograft and syngeneic murine models were administered Wnt/ß-catenin modulating agents DKN-01 and CGX-1321 individually or in sequence. Analytical methods included immunohistochemistry, flow cytometry, multiplex cytokine/chemokine array, and RNA sequencing. RESULTS: DKK1 blockade via DKN-01 increased HLA/MHC expression in human and murine tissues, correlating with heightened expression of known MHC I regulators: NFkB, IL-1, LPS, and IFNy. PORCN inhibition via CGX-1321 increased production of T cell chemoattractant CXCL10, providing a mechanism for observed increases in intra-tumoral T cells. Diverse leukocyte recruitment was noted with elevations in B cells and macrophages, with increased tumor expression of population-specific chemokines. Sequential DKK1 blockade and PORCN inhibition decreased tumor burden as evidenced by reduced omental weights. CONCLUSIONS: Wnt/ß-catenin pathway modulation increases MHC I expression and promotes tumor leukocytic infiltration, facilitating a pro-immune TME associated with decreased tumor burden. This intervention overcomes common tumor immune-evasion mechanisms and may render ovarian tumors susceptible to immunotherapy.


Subject(s)
Antineoplastic Agents/pharmacology , Genital Neoplasms, Female/genetics , Wnt Signaling Pathway/drug effects , beta Catenin/drug effects , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/therapeutic use , Disease Models, Animal , Drug Synergism , Female , Genes, MHC Class I/genetics , Genital Neoplasms, Female/pathology , Genital Neoplasms, Female/therapy , Humans , Immunotherapy , Mice , Mice, Inbred C57BL , Tumor Microenvironment/drug effects , Xenograft Model Antitumor Assays
6.
Vaccines (Basel) ; 9(8)2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34452006

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has highlighted the urgent need for effective prophylactic vaccination to prevent the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Intranasal vaccination is an attractive strategy to prevent COVID-19 as the nasal mucosa represents the first-line barrier to SARS-CoV-2 entry. The current intramuscular vaccines elicit systemic immunity but not necessarily high-level mucosal immunity. Here, we tested a single intranasal dose of our candidate adenovirus type 5-vectored vaccine encoding the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein (AdCOVID) in inbred, outbred, and transgenic mice. A single intranasal vaccination with AdCOVID elicited a strong and focused immune response against RBD through the induction of mucosal IgA in the respiratory tract, serum neutralizing antibodies, and CD4+ and CD8+ T cells with a Th1-like cytokine expression profile. A single AdCOVID dose resulted in immunity that was sustained for over six months. Moreover, a single intranasal dose completely protected K18-hACE2 mice from lethal SARS-CoV-2 challenge, preventing weight loss and mortality. These data show that AdCOVID promotes concomitant systemic and mucosal immunity and represents a promising vaccine candidate.

7.
J Leukoc Biol ; 109(4): 717-729, 2021 04.
Article in English | MEDLINE | ID: mdl-32881077

ABSTRACT

The peritoneal cavity is a fluid filled space that holds most of the abdominal organs, including the omentum, a visceral adipose tissue that contains milky spots or clusters of leukocytes that are organized similar to those in conventional lymphoid tissues. A unique assortment of leukocytes patrol the peritoneal cavity and migrate in and out of the milky spots, where they encounter Ags or pathogens from the peritoneal fluid and respond accordingly. The principal role of leukocytes in the peritoneal cavity is to preserve tissue homeostasis and secure tissue repair. However, when peritoneal homeostasis is disturbed by inflammation, infection, obesity, or tumor metastasis, specialized fibroblastic stromal cells and mesothelial cells in the omentum regulate the recruitment of peritoneal leukocytes and steer their activation in unique ways. In this review, the types of cells that reside in the peritoneal cavity, the role of the omentum in their maintenance and activation, and how these processes function in response to pathogens and malignancy will be discussed.


Subject(s)
Immunity , Omentum/immunology , Peritoneal Cavity/physiology , Adaptive Immunity , Animals , Humans , Immunity, Innate
8.
Mol Cancer Ther ; 20(3): 602-611, 2021 03.
Article in English | MEDLINE | ID: mdl-33323456

ABSTRACT

The immunosuppressive effects of TGFß promotes tumor progression and diminishes response to therapy. In this study, we used ID8-p53-/- tumors as a murine model of high-grade serous ovarian cancer. An mAb targeting all three TGFß ligands was used to neutralize TGFß. Ascites and omentum were collected and changes in T-cell response were measured using flow. Treatment with anti-TGFß therapy every other day following injection of tumor cells resulted in decreased ascites volume (4.1 mL vs. 0.7 mL; P < 0.001) and improved the CD8:Treg ratio (0.37 vs. 2.5; P = 0.02) compared with untreated mice. A single dose of therapy prior to tumor challenge resulted in a similar reduction of ascites volume (2.7 vs. 0.67 mL; P = 0.002) and increased CD8:Tregs ratio (0.36 vs. 1.49; P = 0.007), while also significantly reducing omental weight (114.9 mg vs. 93.4 mg; P = 0.017). Beginning treatment before inoculation with tumor cells and continuing for 6 weeks, we observe similar changes and prolonged overall survival (median 70 days vs. 57.5 days). TGFß neutralization results in favorable changes to the T-cell response within the tumor microenvironment, leading to decreased tumor progression in ovarian cancer. The utilization of anti-TGFß therapy may be an option for management in patients with ovarian cancer to improve clinical outcomes and warrants further investigation.


Subject(s)
Ovarian Neoplasms/genetics , Transforming Growth Factor beta/metabolism , Animals , Cell Line, Tumor , Disease Models, Animal , Disease Progression , Female , Humans , Mice , Ovarian Neoplasms/mortality , Ovarian Neoplasms/pathology , Survival Analysis , Transfection
9.
bioRxiv ; 2020 Oct 11.
Article in English | MEDLINE | ID: mdl-33052351

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has highlighted the urgent need for effective preventive vaccination to reduce burden and spread of severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2) in humans. Intranasal vaccination is an attractive strategy to prevent COVID-19 as the nasal mucosa represents the first-line barrier to SARS-CoV-2 entry before viral spread to the lung. Although SARS-CoV-2 vaccine development is rapidly progressing, the current intramuscular vaccines are designed to elicit systemic immunity without conferring mucosal immunity. Here, we show that AdCOVID, an intranasal adenovirus type 5 (Ad5)-vectored vaccine encoding the receptor binding domain (RBD) of the SARS-CoV-2 spike protein, elicits a strong and focused immune response against RBD through the induction of mucosal IgA, serum neutralizing antibodies and CD4+ and CD8+ T cells with a Th1-like cytokine expression profile. Therefore, AdCOVID, which promotes concomitant systemic and local mucosal immunity, represents a promising COVID-19 vaccine candidate.

10.
Ther Adv Med Oncol ; 12: 1758835920913798, 2020.
Article in English | MEDLINE | ID: mdl-32313567

ABSTRACT

BACKGROUND: The Wnt/ß-catenin pathway is linked to tumorigenesis in a variety of tumors and promotes T cell exclusion and resistance to checkpoint inhibitors. We sought to determine whether a small molecule inhibitor of this pathway, WNT974, would impair tumor growth, affect gene expression patterns, and improve the immune response in human and murine ovarian cancer models. METHODS: Human ovarian cancer cells were treated with WNT974 in vitro. RNAseq libraries were constructed and differences in gene expression patterns between responders and nonresponders were compared to The Cancer Genome Atlas (TCGA). Mice with subcutaneous or intraperitoneal ID8 ovarian cancer tumors were treated with WNT974, paclitaxel, combination, or control. Tumor growth and survival were measured. Flow cytometry and ß-TCR repertoire analysis were used to determine the immune response. RESULTS: Gene expression profiling revealed distinct signatures in responders and nonresponders, which strongly correlated with T cell infiltration patterns in the TCGA analysis of ovarian cancer. WNT974 inhibited tumor growth, prevented ascites formation, and prolonged survival in mouse models. WNT974 increased the ratio of CD8+ T cells to T regulatory cells (Tregs) in tumors and enhanced the effector functions of infiltrating CD4+ and CD8+ T cells. Treatment also decreased the expression of inhibitory receptors on CD8+ T cells. Combining WNT974 with paclitaxel further reduced tumor growth, prolonged survival, and expanded the T cell repertoire. CONCLUSIONS: These findings suggest that inhibiting the Wnt/ß-catenin pathway may have a potent immunomodulatory effect in the treatment of ovarian cancer, particularly when combined with paclitaxel.

11.
Cancers (Basel) ; 12(3)2020 Mar 24.
Article in English | MEDLINE | ID: mdl-32213921

ABSTRACT

In ovarian cancer, upregulation of the Wnt/ß-catenin pathway leads to chemoresistance and correlates with T cell exclusion from the tumor microenvironment (TME). Our objectives were to validate these findings in an independent cohort of ovarian cancer subjects and determine whether inhibiting the Wnt pathway in a syngeneic ovarian cancer murine model could create a more T-cell-inflamed TME, which would lead to decreased tumor growth and improved survival. We preformed RNA sequencing in a cohort of human high grade serous ovarian carcinoma subjects. We used CGX1321, an inhibitor to the porcupine (PORCN) enzyme that is necessary for secretion of WNT ligand, in mice with established ID8 tumors, a murine ovarian cancer cell line. In order to investigate the effect of decreased Wnt/ß-catenin pathway activity in the dendritic cells (DCs), we injected ID8 cells in mice that lacked ß-catenin specifically in DCs. Furthermore, to understand how much the effects of blocking the Wnt/ß-catenin pathway are dependent on CD8+ T cells, we injected ID8 cells into mice with CD8+ T cell depletion. We confirmed a negative correlation between Wnt activity and T cell signature in our cohort. Decreasing WNT ligand production resulted in increases in T cell, macrophage and dendritic cell functions, decreased tumor burden and improved survival. Reduced tumor growth was found in mice that lacked ß-catenin specifically in DCs. When CD8+ T cells were depleted, CGX1321 treatment did not have the same magnitude of effect on tumor growth. Our investigation confirmed an increase in Wnt activity correlated with a decreased T-cell-inflamed environment; a relationship that was further supported in our pre-clinical model that suggests inhibiting the Wnt/ß-catenin pathway was associated with decreased tumor growth and improved survival via a partial dependence on CD8+ T cells.

12.
Redox Biol ; 26: 101307, 2019 09.
Article in English | MEDLINE | ID: mdl-31473487

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a progressive disease with an increased mortality. Metabolic reprogramming has a critical role in multiple chronic diseases. Lung macrophages expressing the mitochondrial calcium uniporter (MCU) have a critical role in fibrotic repair, but the contribution of MCU in macrophage metabolism is not known. Here, we show that MCU regulates peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and metabolic reprogramming to fatty acid oxidation (FAO) in macrophages. MCU regulated PGC-1α expression by increasing the phosphorylation of ATF-2 by the p38 MAPK in a redox-dependent manner. The expression and activation of PGC-1α via the p38 MAPK was regulated by MCU-mediated mitochondrial calcium uptake, which is linked to increased mitochondrial ROS (mtROS) production. Mice harboring a conditional expression of dominant-negative MCU in macrophages had a marked reduction in mtROS and FAO and were protected from pulmonary fibrosis. Moreover, IPF lung macrophages had evidence of increased MCU and mitochondrial calcium, increased phosphorylation of ATF2 and p38, as well as increased expression of PGC-1α. These observations suggest that macrophage MCU-mediated metabolic reprogramming contributes to fibrotic repair after lung injury.


Subject(s)
Calcium Channels/metabolism , Energy Metabolism , Gene Expression Regulation , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/metabolism , Adult , Aged , Animals , Calcium/metabolism , Disease Models, Animal , Female , Humans , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/pathology , Male , Mice , Middle Aged , Mitochondria/genetics , Mitochondria/metabolism , Oxidoreductases Acting on CH-NH2 Group Donors/metabolism , Oxygen Consumption , Phenotype , Pulmonary Fibrosis/pathology , Reactive Oxygen Species/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
13.
Immunity ; 51(1): 155-168.e5, 2019 07 16.
Article in English | MEDLINE | ID: mdl-31248780

ABSTRACT

Genetic variation influences how the genome is interpreted in individuals and in mouse strains used to model immune responses. We developed approaches to utilize next-generation sequencing datasets to identify sequence variation in genes and enhancer elements in congenic and backcross mouse models. We defined genetic variation in the widely used B6-CD45.2 and B6.SJL-CD45.1 congenic model, identifying substantial differences in SJL genetic content retained in B6.SJL-CD45.1 strains on the basis of the vendor source of the mice. Genes encoding PD-1, CD62L, Bcl-2, cathepsin E, and Cxcr4 were within SJL genetic content in at least one vendor source of B6.SJL-CD45.1 mice. SJL genetic content affected enhancer elements, gene regulation, protein expression, and amino acid content in CD4+ T helper 1 cells, and mice infected with influenza showed reduced expression of Cxcr4 on B6.SJL-CD45.1 T follicular helper cells. These findings provide information on experimental variables and aid in creating approaches that account for genetic variables.


Subject(s)
Cathepsin E/metabolism , Enhancer Elements, Genetic/genetics , Immunity/genetics , Receptors, CXCR4/metabolism , Th1 Cells/immunology , Animals , Cathepsin E/genetics , Commerce , Gene Expression Regulation , Genetic Background , Genetic Variation , Germinal Center/immunology , High-Throughput Nucleotide Sequencing , Inbreeding , Leukocyte Common Antigens/genetics , Mice , Mice, Congenic , Mice, Inbred C57BL , Models, Animal , Receptors, CXCR4/genetics
14.
Cancer Immunol Immunother ; 68(2): 175-188, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30334128

ABSTRACT

The expression of MHC class II molecules (MHCII) on tumor cells correlates with survival and responsiveness to immunotherapy. However, the mechanisms underlying these observations are poorly defined. Using a murine breast tumor line, we showed that MHCII-expressing tumors grew more slowly than controls and recruited more functional CD4+ and CD8+ T cells. In addition, MHCII-expressing tumors contained more TCR clonotypes expanded to a larger degree than control tumors. Functional CD8+ T cells in tumors depended on CD4+ T cells. However, both CD4+ and CD8+ T cells eventually became exhausted, even in MHCII-expressing tumors. Treatment with anti-CTLA4, but not anti-PD-1 or anti-TIM-3, promoted complete eradication of MHCII-expressing tumors. These results suggest tumor cell expression of MHCII facilitates the local activation of CD4+ T cells, indirectly helps the activation and expansion of CD8+ T cells, and, in combination with the appropriate checkpoint inhibitor, promotes tumor regression.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Histocompatibility Antigens Class II/immunology , Mammary Neoplasms, Experimental/immunology , Tumor Burden/immunology , Animals , Antibodies/immunology , Antibodies/pharmacology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , CTLA-4 Antigen/antagonists & inhibitors , CTLA-4 Antigen/immunology , CTLA-4 Antigen/metabolism , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic/immunology , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/metabolism , Humans , Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/metabolism , Mice , Nuclear Proteins/genetics , Nuclear Proteins/immunology , Nuclear Proteins/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Programmed Cell Death 1 Receptor/metabolism , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Trans-Activators/genetics , Trans-Activators/immunology , Trans-Activators/metabolism , Tumor Burden/drug effects , Tumor Burden/genetics
15.
Cancer ; 124(24): 4657-4666, 2018 12 15.
Article in English | MEDLINE | ID: mdl-30423192

ABSTRACT

BACKGROUND: Ovarian cancer is poorly immunogenic; however, increased major histocompatibility complex class II (MHCII) expression correlates with improved immune response and prolonged survival in patients with ovarian cancer. The authors previously demonstrated that the histone deacetylase inhibitor entinostat increases MHCII expression on ovarian cancer cells. In the current study, they evaluated whether entinostat treatment and resultant MHCII expression would enhance beneficial immune responses and impair tumor growth in mice with ovarian cancer. METHODS: C57BL/6 mice bearing intraperitoneal ID8 tumors were randomized to receive entinostat 20 mg/kg daily versus control. Changes in messenger RNA (mRNA) expression of 46 genes important for antitumor immunity were evaluated using NanoString analysis, and multicolor flow cytometry was used to measure changes in protein expression and tumor-infiltrating immune cells. RESULTS: Entinostat treatment decreased the growth of both subcutaneously and omental ID8 tumors and prolonged survival in immunocompetent C57BL/6 mice. NanoString analysis revealed significant changes in mRNA expression in 21 of 46 genes, including increased expression of the MHCI pathway, the MHCII transactivator (CIITA), interferon γ, and granzyme B. C57BL/6 mice that received entinostat had increased MHCII expression on omental tumor cells and a higher frequency of tumor-infiltrating, CD8-positive T cells by flow cytometry. In immunocompromised mice, treatment with entinostat had no effect on tumor size and did not increase MHCII expression. CONCLUSIONS: In the current murine ovarian cancer model, entinostat treatment enhances beneficial immune responses. Moreover, these antitumor effects of entinostat are dependent on an intact immune system. Future studies combining entinostat with checkpoint inhibitors or other immunomodulatory agents may achieve more durable antitumor responses in patients with ovarian cancer.


Subject(s)
Benzamides/administration & dosage , Histocompatibility Antigens Class II/genetics , Histone Deacetylase Inhibitors/administration & dosage , Ovarian Neoplasms/drug therapy , Pyridines/administration & dosage , Up-Regulation , Adaptive Immunity , Animals , Benzamides/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Histocompatibility Antigens Class II/metabolism , Histone Deacetylase Inhibitors/pharmacology , Humans , Immunocompromised Host , Mice , Mice, Inbred C57BL , Nuclear Proteins/genetics , Ovarian Neoplasms/genetics , Ovarian Neoplasms/immunology , Precision Medicine , Pyridines/pharmacology , Random Allocation , Trans-Activators/genetics , Xenograft Model Antitumor Assays
16.
Methods Mol Biol ; 1845: 1-15, 2018.
Article in English | MEDLINE | ID: mdl-30141004

ABSTRACT

Tertiary lymphoid structures (TLOs), also known as ectopic lymphoid structures, are associated with chronic infections and inflammatory diseases. Despite their association with pathology, these structures are actually a normal, albeit transient, component of the immune system and facilitate local immune responses that are meant to mitigate inflammation and resolve infection. Many of the mechanisms controlling the formation and function of tertiary lymphoid structures have been identified, in part by experimentally triggering their formation using defined stimuli under controlled conditions. Here, we introduce the experimental and pathological conditions in which tertiary lymphoid tissues are formed, describe the mechanisms linked to their formation, and discuss their functions in the context of both infection and inflammation.


Subject(s)
Lymphoid Tissue/pathology , Tertiary Lymphoid Structures/etiology , Tertiary Lymphoid Structures/pathology , Animals , Autoimmunity , Gene Expression Regulation , Humans , Immunity , Infections/etiology , Infections/metabolism , Infections/pathology , Inflammation/etiology , Inflammation/metabolism , Inflammation/pathology , Lymphoid Tissue/immunology , Lymphoid Tissue/metabolism , Signal Transduction , Tertiary Lymphoid Structures/metabolism
17.
Trends Immunol ; 38(7): 526-536, 2017 07.
Article in English | MEDLINE | ID: mdl-28579319

ABSTRACT

The omentum is a visceral adipose tissue with unique immune functions. Although it is primarily an adipose tissue, the omentum also contains lymphoid aggregates, called milky spots (MSs), that contribute to peritoneal immunity by collecting antigens, particulates, and pathogens from the peritoneal cavity and, depending on the stimuli, promoting a variety of immune responses, including inflammation, tolerance, or even fibrosis. Reciprocal interactions between cells in the MS and adipocytes regulate their immune and metabolic functions. Importantly, the omentum collects metastasizing tumor cells and supports tumor growth by immunological and metabolic mechanisms. Here we summarize our current knowledge about the development, organization, and function of the omentum in peritoneal immunity.


Subject(s)
B-Lymphocytes/immunology , Cytokines/immunology , Lymphoid Tissue/immunology , Omentum/immunology , Receptors, Cytokine/immunology , T-Lymphocytes, Regulatory/immunology , Adipocytes/cytology , Adipocytes/immunology , Adipose Tissue/cytology , Adipose Tissue/immunology , Animals , B-Lymphocytes/cytology , Cell Communication/immunology , Cytokines/genetics , Epithelium/immunology , Gene Expression Regulation , Humans , Lymphoid Tissue/cytology , Macrophages/cytology , Macrophages/immunology , Omentum/cytology , Receptors, Cytokine/genetics , Signal Transduction , T-Lymphocytes, Regulatory/cytology
18.
Oncotarget ; 8(27): 44159-44170, 2017 Jul 04.
Article in English | MEDLINE | ID: mdl-28498806

ABSTRACT

Expression of MHC class II pathway proteins in ovarian cancer correlates with prolonged survival. Murine and human ovarian cancer cells were treated with epigenetic modulators - histone deacetylase inhibitors and a DNA methyltransferase inhibitor. mRNA and protein expression of the MHC II pathway were evaluated by qPCR and flow cytometry. Treatment with entinostat and azacytidine of ID8 cells in vitro increased mRNA levels of Cd74, Ciita, and H2-Aa, H2-Eb1. MHC II and CD74 protein expression were increased after treatment with either agent. A dose dependent response in mRNA and protein expression was seen with entinostat. Combination treatment showed higher MHC II protein expression than with single agent treatment. In patient derived xenografts, CIITA, CD74, and MHC II mRNA transcripts were significantly increased after combination treatment. Expression of MHC II on ovarian tumors in MISIIR-Tag mice was increased with both agents relative to control. Combination treatment significantly reduced ID8 tumor growth in immune-competent mice. Epigenetic treatment increases expression of MHC II on ovarian cancer cells and impedes tumor growth. This approach warrants further study in ovarian cancer patients.


Subject(s)
Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Histocompatibility Antigens Class II/genetics , Ovarian Neoplasms/genetics , Animals , Antimetabolites, Antineoplastic/pharmacology , Azacitidine/pharmacology , Benzamides/pharmacology , Cell Line, Tumor , DNA Methylation , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Synergism , Female , Gene Expression Regulation, Neoplastic/drug effects , Histocompatibility Antigens Class II/immunology , Histone Deacetylase Inhibitors/pharmacology , Humans , Hydroxamic Acids/pharmacology , Indoles/pharmacology , Mice , Ovarian Neoplasms/immunology , Ovarian Neoplasms/pathology , Panobinostat , Pyridines/pharmacology , RNA, Messenger/genetics , Transcription, Genetic , Tumor Burden , Xenograft Model Antitumor Assays
19.
Sci Rep ; 7: 44571, 2017 03 17.
Article in English | MEDLINE | ID: mdl-28303919

ABSTRACT

Obesity impairs the relaxant capacity of adipose tissue surrounding the vasculature (PVAT) and has been implicated in resultant obesity-related hypertension and impaired glucose intolerance. Resident immune cells are thought to regulate adipocyte activity. We investigated the role of eosinophils in mediating normal PVAT function. Healthy PVAT elicits an anti-contractile effect, which was lost in mice deficient in eosinophils, mimicking the obese phenotype, and was restored upon eosinophil reconstitution. Ex vivo studies demonstrated that the loss of PVAT function was due to reduced bioavailability of adiponectin and adipocyte-derived nitric oxide, which was restored after eosinophil reconstitution. Mechanistic studies demonstrated that adiponectin and nitric oxide are released after activation of adipocyte-expressed ß3 adrenoceptors by catecholamines, and identified eosinophils as a novel source of these mediators. We conclude that adipose tissue eosinophils play a key role in the regulation of normal PVAT anti-contractile function.


Subject(s)
Adipose Tissue/metabolism , Eosinophils/metabolism , Hypertension/metabolism , Obesity/metabolism , Adipocytes/metabolism , Adiponectin/genetics , Adiponectin/metabolism , Adipose Tissue/pathology , Animals , Aorta/metabolism , Aorta/pathology , Blood Vessels/metabolism , Blood Vessels/pathology , Catecholamines/metabolism , Diet, High-Fat , Humans , Hypertension/complications , Hypertension/pathology , Mice , Nitric Oxide/metabolism , Obesity/complications , Obesity/pathology , Receptors, Adrenergic, beta-3/genetics , Receptors, Adrenergic, beta-3/metabolism
20.
J Ovarian Res ; 9(1): 70, 2016 Oct 27.
Article in English | MEDLINE | ID: mdl-27784340

ABSTRACT

BACKGROUND: Despite advances in surgical aggressiveness and conventional chemotherapy, ovarian cancer remains the most lethal cause of gynecologic cancer mortality; consequently there is a need for new therapeutic agents and innovative treatment paradigms for the treatment of ovarian cancer. Several studies have demonstrated that ovarian cancer is an immunogenic disease and immunotherapy represents a promising and novel approach that has not been completely evaluated in ovarian cancer. Our objective was to evaluate the anti-tumor activity of an oncolytic herpes simplex virus "armed" with murine interleukin-12 and its ability to elicit tumor-specific immune responses. We evaluated the ability of interleukin-12-expressing and control oncolytic herpes simplex virus to kill murine and human ovarian cancer cell lines in vitro. We also administered interleukin-12-expressing oncolytic herpes simplex virus to the peritoneal cavity of mice that had developed spontaneous, metastatic ovarian cancer and determined overall survival and tumor burden at 95 days. We used flow cytometry to quantify the tumor antigen-specific CD8+ T cell response in the omentum and peritoneal cavity. RESULTS: All ovarian cancer cell lines demonstrated susceptibility to oncolytic herpes simplex virus in vitro. Compared to controls, mice treated with interleukin-12-expressing oncolytic herpes simplex virus demonstrated a more robust tumor antigen-specific CD8+ T-cell immune response in the omentum (471.6 cells vs 33.1 cells; p = 0.02) and peritoneal cavity (962.3 cells vs 179.5 cells; p = 0.05). Compared to controls, mice treated with interleukin-12-expressing oncolytic herpes simplex virus were more likely to control ovarian cancer metastases (81.2 % vs 18.2 %; p = 0.008) and had a significantly longer overall survival (p = 0.02). Finally, five of 6 mice treated with interleukin-12-expressing oHSV had no evidence of metastatic tumor when euthanized at 6 months, compared to two of 4 mice treated with sterile phosphate buffer solution. CONCLUSION: Our pilot study demonstrates that an interleukin-12-expressing oncolytic herpes simplex virus effectively kills both murine and human ovarian cancer cell lines and promotes tumor antigen-specific CD8+ T-cell responses in the peritoneal cavity and omentum, leading to reduced peritoneal metastasis and improved survival in a mouse model.


Subject(s)
Genetic Therapy , Genetic Vectors/genetics , Interleukin-12/genetics , Oncolytic Virotherapy , Oncolytic Viruses/genetics , Ovarian Neoplasms/genetics , Ovarian Neoplasms/immunology , Simplexvirus/genetics , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Disease Models, Animal , Female , Genetic Therapy/methods , Humans , Male , Mice , Neoplasm Metastasis , Oncolytic Virotherapy/methods , Ovarian Neoplasms/pathology , Ovarian Neoplasms/therapy , Survival Analysis , Tumor Burden , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...