Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Chem Biodivers ; : e202401262, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39255507

ABSTRACT

This study investigates for the first time the effects of UV light exposure on the chemical composition of artisanal and cold-pressed culinary and cosmetic argan oils, as well as their quality and biological activities. We ascertained the oxidative stability of both types of oil through measurements of the peroxide value, acidity, UV-spectrophotometric indexes (E232 and E270), and iodine value. Over the course of eight hours at room temperature, the impact of UV light on the breakdown of tocopherols, polyphenols, chlorophylls, and carotenoid pigments was examined. The findings showed that during photo-oxidation, acidity, peroxide value, and particular extinction coefficients (E232 and E270) gradually increased. On the other hand, a decline in the content of polyphenols, tocopherols, carotenoid, and chlorophyll was noted. Interestingly, iodine levels failed to improve. Although after an eight-hour degradation, the physicochemical profile of argan oils remained exceptional. DPPH• (1,1-Diphenyl-2-picrylhydrazyl) antioxidant activity tests showed a gradual decrease in radical inhibition over time, which was attributed to lower levels of tocopherol and polyphenol. However, roasted oils showed antifungal action against Botrytis cinerea fungus, while Argan vegetable oils showed no activity against Escherichia coli, Microbacterium resistens, Staphylococcus saprophyticus, and Raoultella ornithinolytica, according to antimicrobial assays.

2.
Molecules ; 27(22)2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36431807

ABSTRACT

This study aimed to evaluate the effects of peanut varieties cultivated in Morocco (Virginia and Valencia) and extraction methods (cold press, CP; Soxhlet, Sox and maceration, and Mac) on the fatty acid profile, phytosterol, and tocopherol contents, quality characteristics, and antioxidant potential of peanut seed oil. The DPPH method was used to determine the antioxidant activity of the oils. The results revealed that fatty acid content was slightly affected by the extraction technique. However, the CP method was shown to be an excellent approach for extracting oil with desirable quality features compared to the Sox and Mac methods. Furthermore, the peanut oil extracted via CP carried a higher amount of bioactive compounds and exhibited remarkable antioxidant activities. The findings also revealed higher oleic acid levels from the Virginia oil, ranging from 56.46% to 56.99%. Besides, a higher total phytosterol and tocopherol content and DPPH scavenging capacity were obtained from the Valencia oil. Analyzing the study, it can be inferred that extraction method and variety both affect the composition of the peanut oil's bioactive compounds and antioxidant activity. This information is relevant for extracting peanut oil with a greater level of compounds of industrial interest.


Subject(s)
Antioxidants , Phytosterols , Peanut Oil/chemistry , Antioxidants/pharmacology , Antioxidants/analysis , Plant Oils/chemistry , Virginia , Tocopherols/analysis , Fatty Acids/chemistry , Vitamin E/analysis , Nutritive Value , Phytosterols/analysis , Arachis
3.
Front Microbiol ; 13: 1026991, 2022.
Article in English | MEDLINE | ID: mdl-36590425

ABSTRACT

Morocco holds the vast majority of the world's phosphate reserves, but due to the processes involved in extracting and commercializing these reserves, large quantities of de-structured, nutritionally deficient mine phosphate wastes are produced each year. In a semi-arid climate, these wastes severely hamper plant growth and development leading to huge unvegetated areas. Soil indigenous Plant Growth-Promoting Bacteria (PGPB) play a pivotal role in restauration of these phosphate mining wastes by revegetation, by increasing plants development, soil functioning, and nutrient cycling. The development of a vegetative cover above the degraded phosphate wastes, could stabilize and reintegrate these wastes in the surrounding environment. The current study's objectives were to isolate, characterize, and identify indigenous bacterial strains, and test their PGP activity in vitro and, for the best-performing strains in planta, in order to assess their potential for acting as biofertilizers. A quantitative test for the synthesis of auxin and the production of siderophores as well as a qualitative test for the solubilization of phosphate were performed on all isolated bacterial strains. The production of hydrogen cyanide (HCN), exopolysaccharides (EPS), and enzymes were also examined. Three bacteria, selected among the best PGPB of this study, were tested in planta to determine whether such indigenous bacteria could aid plant growth in this de-structured and nutrient-poor mining soil. Using 16S rRNA gene sequencing, 41 bacterial strains were isolated and 11 genera were identified: Acinetobacter, Agrococcus, Bacillus, Brevibacterium, Microbacterium, Neobacillus, Paenibacillus, Peribacillus, Pseudarthrobacter, Stenotrophomonas, and Raoultella. Among the three best performing bacteria (related to Bacillus paramycoides, Brevibacterium anseongense, and Stenotrophomonas rhizophila), only Stenotrophomonas rhizophila and Brevibacterium anseongense were able to significantly enhance Lupinus albus L. growth. The best inoculation results were obtained using the strain related to Stenotrophomonas rhizophila, improving the plant's root dry weight and chlorophyll content. This is also, to our knowledge, the first study to show a PGP activity of Brevibacterium anseongense.

4.
Front Microbiol ; 12: 666936, 2021.
Article in English | MEDLINE | ID: mdl-34305834

ABSTRACT

Soil microbiota are vital for successful revegetation, as they play a critical role in nutrient cycles, soil functions, and plant growth and health. A rehabilitation scenario of the abandoned Kettara mine (Morocco) includes covering acidic tailings with alkaline phosphate mine wastes to limit water infiltration and hence acid mine drainage. Revegetation of phosphate wastes is the final step to this rehabilitation plan. However, revegetation is hard on this type of waste in semi-arid areas and only a few plants managed to grow naturally after 5 years on the store-and-release cover. As we know that belowground biodiversity is a key component for aboveground functioning, we sought to know if any structural problem in phosphate waste communities could explain the almost absence of plants. To test this hypothesis, bacterial and archaeal communities present in these wastes were assessed by 16S rRNA metabarcoding. Exploration of taxonomic composition revealed a quite diversified community assigned to 19 Bacterial and two Archaeal phyla, similar to other studies, that do not appear to raise any particular issues of structural problems. The dominant sequences belonged to Proteobacteria, Bacteroidetes, Actinobacteria, and Gemmatimonadetes and to the genera Massilia, Sphingomonas, and Adhaeribacter. LEfSe analysis identified 19 key genera, and metagenomic functional prediction revealed a broader phylogenetic range of taxa than expected, with all identified genera possessing at least one plant growth-promoting trait. Around 47% of the sequences were also related to genera possessing strains that facilitate plant development under biotic and environmental stress conditions, such as drought and heat.

SELECTION OF CITATIONS
SEARCH DETAIL