Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(22): 29141-29152, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38773701

ABSTRACT

Poor interfacial quality and low refractive index contrast (Δn) are critical challenges for the development of high-performance one-dimensional photonic crystals (1DPhCs) via solution methods that impede their optical efficiency. Herein, we introduce an innovative approach by hybridizing hollow SiO2 with poly(vinyl alcohol), referred to as PHS, followed by alternate assembly with TiO2 via spin-coating, achieving a 1DPhC with Δn = 0.76 at the wavelength of 550 nm. This method circumvents the need for high-temperature treatment and complex curing conditions, resulting in a 1DPhC with superior interfacial and optical characteristics. By adjusting the thickness of the PHS layers, we can finely tune the reflectance spectrum, attaining over 99% reflectance at the photonic band gap. Furthermore, 1DPhC demonstrates excellent adhesion to polycarbonate substrates and retains its optimal optical performance even after rigorous environmental testing, including hygrothermal cycles, exposure to hot water, friction, and solvent sonication. This research paves the way for the facile fabrication of high-performance 1DPhCs under mild conditions, offering new perspectives for photonic material processing.

2.
J Colloid Interface Sci ; 658: 772-782, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38154240

ABSTRACT

Aerogels with 3D porous structures have been attracting increasing attention among functional materials due to their advantages of being lightweight and high specific surface area. Precise control of the porous structure of aerogel is essential to improve its performance. In this work, polylactic acid (PLA) aerogels with distinctly different microstructures were fabricated by precisely controlling the phase separation behavior of the ternary solution system. Rheological and theoretical analyses have revealed that the interactions between polymer molecules, solvents and non-solvents play a crucial role in determining the nucleation and growth of poor olymer and rich polymer phases. By adjusting the non-solvent type and the solution composition, aerogels with spider network structure, bead-like connected microsphere structure, and cluster petal structure were obtained. Ideal spinodal phase separation conditions were obtained to produce aerogels with a homogeneous fiber network structure. The optimum PLA aerogel achieved an extremely porosity of 96 % and a high specific surface area of 114 m2/g, which rendered it with excellent triboelectric generation performance. Thus, this work provides fundamental insights into the precise regulation of the phase separation behavior and the structure of the aerogel, which can help boost the performance and expand the applications of PLA aerogels.

3.
Small ; 19(46): e2303716, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37475506

ABSTRACT

Harvesting electrical energy from water and moisture has emerged as a novel ecofriendly energy conversion technology. Herein, a multifunctional asymmetric polyaniline/carbon nanotubes/poly(vinyl alcohol) (APCP) that can produce electric energy from both saline water and moisture and generate fresh water simultaneously is developed. The constructed APCP possesses a negatively charged porous structure that allows continuous generation of protons and ion diffusion through the material, and a hydrophilicity-hydrophobic interface which results in a constant potential difference and sustainable output. A single APCP can maintain stable output for over 130 h and preserve a high voltage of 0.61 V, current of 81 µA, and power density of 82.4 µW cm-3 with 0.15 cm3 unit size in the water-induced electricity generation process. When harvesting moisture energy, the APCP creates dry-wet asymmetries and triggers the spontaneous development of electrical double layer with a current density of 1.25 mA cm-3 , sufficient to power small electronics. A device consisting of four APCP can generate stable electricity of 3.35 V and produce clean water with an evaporation rate of 2.06 kg m-2  h-1 simultaneously. This work provides insights into the fabrication of multifunctional fabrics for multisource energy harvesting and simultaneous solar steam generation.

4.
J Safety Res ; 85: 114-128, 2023 06.
Article in English | MEDLINE | ID: mdl-37330861

ABSTRACT

INTRODUCTION: Work-related musculoskeletal disorders (WMSDs) are recognized as a leading cause of nonfatal injuries in construction, but no review of existing studies has systematically analyzed and visualized the trends of WMSDs among construction workers. The current science mapping-based review summarized research published between 2000 and 2021 related to WMSDs among construction workers through co-word, co-author, and citation analysis. METHOD: A total of 63 bibliographic records retrieved from the Scopus database were analyzed. RESULTS: The results identified influential authors with high impacts in this research domain. Moreover, the results indicated that MSDs, ergonomics, and construction not only had the highest occurrence of been studied, but also the highest impact in terms of total link strength. In addition, the most significant contributions to research relating to WMSDs among construction workers have originated primarily from the United States, Hong Kong, and Canada. Furthermore, a follow-up in-depth qualitative discussion was conducted to focus on summarizing mainstream research topics, identifying existing research gaps, and proposing directions for future studies. CONCLUSIONS: This review provides an in-depth understanding of related research on WMSDs among construction workers and proposes the emerging trends in this research field.


Subject(s)
Construction Industry , Musculoskeletal Diseases , Occupational Diseases , Humans , United States , Risk Factors , Musculoskeletal Diseases/epidemiology , Musculoskeletal Diseases/etiology , Ergonomics , Hong Kong , Occupational Diseases/epidemiology , Occupational Diseases/etiology , Prevalence
5.
Polymers (Basel) ; 14(7)2022 Apr 02.
Article in English | MEDLINE | ID: mdl-35406325

ABSTRACT

In recent years, with the appearance of the triboelectric nanogenerator (TENG), there has been a wave of research on small energy harvesting devices and self-powered wearable electronics. Hydrogels-as conductive materials with excellent tensile properties-have been widely focused on by researchers, which encouraged the development of the hydrogel-based TENGs (H-TENGs) that use the hydrogel as an electrode. Due to the great feasibility of adjusting the conductivity and mechanical property as well as the microstructure of the hydrogels, many H-TENGs with excellent performance have emerged, some of which are capable of excellent outputting ability with an output voltage of 992 V, and self-healing performance which can spontaneously heal within 1 min without any external stimuli. Although there are numerous studies on H-TENGs with excellent performance, a comprehensive review paper that systematically correlates hydrogels' properties to TENGs is still absent. Therefore, in this review, we aim to provide a panoramic overview of the working principle as well as the preparation strategies that significantly affect the properties of H-TENGs. We review hydrogel classification categories such as their network composition and their potential applications on sensing and energy harvesting, and in biomedical fields. Moreover, the challenges faced by the H-TENGs are also discussed, and relative future development of the H-TENGs are also provided to address them. The booming growth of H-TENGs not only broadens the applications of hydrogels into new areas, but also provides a novel alternative for the sustainable power sources.

6.
ACS Appl Mater Interfaces ; 14(12): 14607-14617, 2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35297593

ABSTRACT

Proliferation in telecommunications and integrated/intelligent devices entails an intense concern for electromagnetic interference (EMI) shielding and versatility. It remains an activated passion to launch infusive EMI shielding materials integrated with self-powered peculiarities. Herein, a double-layered MXene/polylactic acid (PLA) fabric resonance cavity (D-MPF-RC) comprised of two MXene/PLA fabrics (MPFs) with alternating MXene and PLA structures that are separated by a poly(tetrafluoroethylene) (PTFE) frame is developed. The D-MPF-RC achieved 48.5 and 74.8% improvement in SET and SEA, and 24.6% reduction in SER by introducing the double-layered structure and increasing the resonance cavity (RC) distance without varying the material composition and cost. A high shielding efficiency (SE) of 92.3 dB was obtained at an RC distance of 6 mm owing to the synergetic effects of multiple reflections and destructive EM wave interference. The tribopolarity difference between PLA and MXene and the RC structure made the D-MPF-RC a readily available triboelectric nanogenerator (TENG) that could convert mechanical energy into electricity. The D-MPF-RC TENG demonstrated an open-circuit voltage of 88 V and achieved a peak power density of 35.4 mW m-2 on a 6.6 MΩ external resistor, which made it possible to charge capacitors and serve as a self-powered tactile sensor. This report offers new insights into the design of high-performance EMI shielding shields with a resonance cavity and proposes a feasible pathway to integrate them with energy harvesting capabilities.

7.
Micromachines (Basel) ; 12(5)2021 May 17.
Article in English | MEDLINE | ID: mdl-34067748

ABSTRACT

Reciprocating motion is a widely existing form of mechanical motion in the natural environment. Triboelectric nanogenerators (TENGs) that work in sliding mode are ideal for harnessing large-distance reciprocating motion, and their energy conversion efficiency could be greatly enhanced by adding springs to them. Herein, we focused on investigating the design and optimization principles of sliding mode TENGs by analyzing the effects of spring parameters and vibration frequency on the triboelectric output performance of typical cylindrical sliding TENGs (CS-TENGs). Experimental study and finite elemental analysis were carried out based on a CS-TENG model assembled using a polytetrafluoroethylene (PTFE) film as the negative layer and an aluminum film as the positive layer. The energy output was found to be mainly affected by the change of relative displacement between the two friction layers, rather than the reactive force applied by the springs or the velocity of the sliding motion. However, the frequency of the output signals could be improved when the stiffness coefficient of the springs and the CS-TENG vibration frequency were increased. This study provides valuable directions for the design and optimization of sliding mode TENGs containing springs, and will motivate in-depth research on the fundamental principles of TENG operation.

8.
ACS Appl Mater Interfaces ; 13(21): 24945-24956, 2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34008399

ABSTRACT

Solar steam generation is an efficient way of harvesting solar energy for water purification. Developing a versatile solar absorber with salt resistance and the capability to purify an oil-in-water emulsion is a grand challenge. Herein, a polypropylene (PP) nonwoven fabric-based photothermal absorber is fabricated by the combination of carbon nanotubes (CNTs), polypyrrole (PPy), and a fluorinated hydrophobic coating in a layer-by-layer approach. The specially designed architecture displays a hierarchical microstructure and Janus wetting properties, facilitating solar absorption and heat generation on the evaporation surface, and can effectively prevent salt crystallization. The water layer formed on the superhydrophilic/underwater superoleophobic bottom surface could repel oil droplets and form a channel to advect concentrated salt back into bulk water, which enabled high purity separation of an oil-in-water emulsion and continuous desalinization of seawater without the reduction of the evaporation rate. As a result, the solar absorber can achieve a remarkable evaporation rate of 1.61 kg m-2 h-1 and an energy efficiency of 91.2% under 1 sun irradiation and shows extraordinary performance in the purification of contaminated wastewater (over 99.8% purity). The strategy proposed provides a pathway for developing versatile high-performance solar absorbers for the sustainable treatment of saline water, wastewater, and oil-containing water.

9.
ACS Appl Mater Interfaces ; 13(14): 16916-16927, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33819011

ABSTRACT

Fabric-based triboelectric nanogenerators (TENGs) are promising candidates as wearable energy-harvesting devices and self-powered sensors. Booting the power generation performance is an eternal pursuit for TENGs. Herein, an efficient approach was proposed to enhance the triboelectric performance of commercial velvet fabric by enriching the fiber surface with hierarchical structures and amide bonds through chemical grafting of carbon nanotube (CNT) and poly(ethylenimine) (PEI) via a polyamidation reaction. With an optimized modifier concentration, the fabric-based TENG easily achieved over 10 times improvement in output voltage and current at a low modifier content of less than 1 wt %. The modified-fabric-based TENG was fully washable and exhibited excellent robustness and long-term stability. With a maximum power density of 3.2 W/m2 achieved on a 5 × 106 Ω external resistor, the TENG was able to serve as a power source for various small electronics such as pedometer, digital watch, calculator, and digital timer. In addition, the TENG demonstrated capability in self-powered tactile and pressure sensing and promising potential in human-computer interface applications. The approach proposed provides a feasible path for boosting the triboelectric performance of fabric-based TENGs and gives insights into the design of fabric-based nanogenerators and smart textiles.

10.
ACS Appl Mater Interfaces ; 12(52): 58252-58262, 2020 Dec 30.
Article in English | MEDLINE | ID: mdl-33332083

ABSTRACT

High-performance low-cost superhydrophobic sponges are desired for selective recycling of leaking oils from open water. Herein, an ingenious method is proposed to fabricate an ultrathin superhydrophobic coating layer on a commercial sponge. The coating layer is composed of a shish-kebab-structured porous ultrahigh molecular weight polyethylene (UHMWPE) film that is fabricated from a UHMWPE/xylene solution by shear flow-induced crystallization. A strong relationship between the shish-kebab crystallite morphology and the superwetting performance is confirmed. The UHMWPE coating layer fabricated at a 900 rpm rotation rate possesses a lamellae size of 95.1 nm and a lamellae distance of 27.4 nm, which lead to a high water contact angle of 157° and a low contact angle hysteresis of 4.5°. The UHMWPE layer prepared in 4 min of treatment is thick enough to prevent the intrusion of water even under vacuum and remain superoleophilic. The developed UHMWPE-coated sponge (UCS) exhibited a high absorption capability of 70-191 g/g toward various oils and solvents, which is comparable with the neat melamine sponge. Its excellent compressibility and durability enabled fast recovery of absorbed oil with a high recovery rate (over 85%) by mechanical squeezing. The UCS could be assembled into small devices to selectively collect oil from open water and a water/oil mixture using a pump, which manifests its promising practical applicability. Apart from these extraordinary properties, the approach developed has the lowest material cost and the shortest processing time hitherto.

11.
ACS Appl Mater Interfaces ; 12(20): 23474-23483, 2020 May 20.
Article in English | MEDLINE | ID: mdl-32352755

ABSTRACT

Triboelectric nanogenerators (TENGs) with high transparency and stretchability are desired for invisible and adaptable energy harvesting and sensing. Hydrogel-based TENGs (H-TENG) have shown promising attributes toward flexible and transparent devices. However, the effect of hydrogel property on the triboelectric performance of H-TENG is rarely investigated. Herein, dual-network hydrogels composed of dual-cross-linked poly(vinyl alcohol) (PVA) and sodium alginate (SA) were synthesized and used as ionic electrodes in H-TENGs. The elasticity of the hydrogel was controlled by varying the concentration of SA, and the distinct influence of hydrogel viscoelastic property on H-TENG performance was verified for the first time. By tuning the conductivity and viscoelasticity of PVA/SA hydrogel, the optimum H-TENG exhibited high transparency (over 90%) and stretchability (over 250%) and peak output voltage and current of 203.4 V and 17.6 µA, respectively. A specially designed polydimethylsiloxane (PDMS) bag effectively prevents hydrogel dehydration and maintains a stable output in continuous operation. The H-TENG achieved a power density of 0.98 W/m2 on a 4.7 MΩ external resistor. The H-TENG could easily light 240 green and blue LEDs simultaneously and demonstrated capability to power small electronics, such as a digital timer and pedometer. This study provides insights into the influence of hydrogel property on H-TENG performance and gives guidance for designing and fabricating highly stretchable and transparent TENGs.

12.
ACS Appl Mater Interfaces ; 12(11): 13296-13304, 2020 Mar 18.
Article in English | MEDLINE | ID: mdl-32069009

ABSTRACT

Delamination of coating layer from polymer substrate limits the lifetime and functionality of the protective films. Silicone coating is especially vulnerable to photo irradiation, hydrothermal degradation, and mechanical deformation due to the low interfacial adhesion and mechanical robustness. Herein, an ingenious approach is developed to fabricate ultrastable and durable silicone coating on polycarbonate (PC) substrate through well-controlled nanoscale interfacial engineering. A nanopillar array is fabricated on the PC surface by vacuum-assisted hot embossing using anodic aluminum oxide (AAO) templates. Significant improvement in interfacial shear strength (ISS) is achieved for the silicone coating on the nanostructured PC surface. The delamination mechanism can be controlled by tuning the nanopillar size, and the maximum ISS of 9.9 MPa was reached on a surface with a nanopillar diameter of 320 nm. Attributed to the increased interfacial area and mechanical interlocking structure, the nanostructured interface can effectively dissipate interfacial stress and prevent cracking; therefore, maintaining excellent transparency and performance in the harsh environment. The coating exhibits extraordinary stability and durability when subjected to UV irradiation for 168 h, hydrothermal aging for 120 h, mechanical bending for 1000 cycles, and even surface damage. Thus, the tough silicone coating on polymer substrate realized by nanoscale interfacial engineering is a promising technique for highly stable and durable transparent surface protection.

13.
Mater Sci Eng C Mater Biol Appl ; 98: 241-249, 2019 May.
Article in English | MEDLINE | ID: mdl-30813024

ABSTRACT

Mimicking the mechanical properties of native tissue is an important requirement for tissue engineering scaffolds. Blood vessels are subject to repetitive dilation and contraction and possess a special nonlinear mechanical property due to their triple-layered structure. Fabrication of vascular grafts consisting of bioresorbable materials with biomimetic mechanical properties is an urgent demand, as well as a critical challenge. Inspired by the configuration and function of collagen and elastin in native blood vessels, a new type of triple-layered vascular graft (TLVG) was developed in this study. The TLVGs were composed of braided silk as the inner layer, polyacrylamide (PAM) hydrogel as the middle layer, and electrospun thermoplastic polyurethane (TPU) as the outer layer. The woven-structured silk fibers were able to mimic the properties of the loosely distributed collagen fibers, while the highly elastic PAM hydrogel and TPU nanofibers mimicked the elasticity of elastin in the blood vessel. With this specially designed microstructure and combination of rigid and elastic materials, the TLVGs successfully mimicked the nonlinear mechanical property of native blood vessels. Moreover, TLVGs possess sufficient suture retention strength for surgical implantation. The introduction of a PAM hydrogel layer effectively solved the leaking issue for conventional porous vascular grafts and greatly enhanced the burst pressure. In addition, all materials used have high biocompatibility to human endothelial cells, which indicates that the developed TLVGs have high potential to be used as readily available vascular grafts.


Subject(s)
Acrylic Resins/chemistry , Nanofibers/chemistry , Polyurethanes/chemistry , Silk/chemistry , Tissue Engineering/methods , Animals , Biomimetics , Humans
14.
J Biomed Mater Res B Appl Biomater ; 107(7): 2397-2408, 2019 10.
Article in English | MEDLINE | ID: mdl-30689292

ABSTRACT

A mismatch of mechanical properties and a high rate of thromboses are two critical challenges of creating viable artificial small-diameter vascular grafts (SDVGs). Herein, we propose a method to fabricate wavy multicomponent vascular grafts (WMVGs) via electrospinning using an assembled rotating collector. The WMVGs consisted of a wavy silk/poly(lactic acid) (PLA) inner layer and a thermoplastic polyurethane (TPU) outer layer, which mimic the structures and properties of collagen and elastin in native blood vessels, respectively. Attributed to the wavy structure and the combination of rigid silk/PLA and elastic TPU biomaterials, WMVGs are capable of mimicking the nonlinear tensile stress-strain relationship and "toe region" of native blood vessels. In addition, they have sufficient mechanical strength to meet implantation requirements in terms of tensile strength, suture retention, and burst pressure. Further modification of silk/PLA fibers with dopamine and heparin gave the grafts antithrombogenic properties and greatly enhanced endothelial cell affinities. Human umbilical vein endothelial cells (HUVECs) cultured on modified silk/PLA showed high viability, high proliferation rate, and favorable cell-substrate interactions. Moreover, HUVECs were able to fully cover and freely migrate upward on the lumen of the modified WMVGs without needing a special circulation bioreactor. Therefore, the modified WMVGs possessed biomimetic properties, antithrombogenicity, and enhanced endothelialization, making them a promising candidate for SDVGs. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 2397-2408, 2019.


Subject(s)
Biomimetic Materials/chemistry , Blood Vessel Prosthesis , Human Umbilical Vein Endothelial Cells/metabolism , Materials Testing , Humans , Polyesters/chemistry , Polyurethanes/chemistry , Silk/chemistry
15.
ACS Appl Mater Interfaces ; 11(7): 7479-7487, 2019 Feb 20.
Article in English | MEDLINE | ID: mdl-30672685

ABSTRACT

The severe water contamination caused by oil leakage is calling for low-cost and high-performance absorbent materials for selective oil removal. In this study, a scalable green method was proposed to produce polypropylene (PP)/poly(tetrafluoroethylene) (PTFE) composite foams via conventional processing techniques including twin-screw extrusion and supercritical carbon dioxide foaming. To produce the superhydrophobic foam, micro- and nanosized PTFE particles were melt blended with PP and subsequently foamed. Ascribed to the nanofibrillation of microsized PTFE during processing, the fabricated foam exhibited a special highly porous structure with PTFE nanofibrils and nanoparticles uniformly distributed on the pore surfaces within the PP matrix, which resulted in a remarkably high water contact angle of 156.8° and a low contact angle hysteresis of 1.9°. Unlike traditional surface-modified superhydrophobic absorbers, the foams prepared are entirely superhydrophobic, which means that they remain superhydrophobic when being fractured or cut. Moreover, they are highly durable and maintained the superhydrophobicity when subjected to ultrasonication and mechanical sanding. When used in selective oil absorption, the durable foams exhibited excellent absorption efficiency and high stability in repetitive and long-term use. These advantages make the PP/PTFE foam a promising superabsorbent material for water remediation.

16.
Nanoscale ; 10(48): 23131-23140, 2018 Dec 13.
Article in English | MEDLINE | ID: mdl-30515502

ABSTRACT

Boosting power generation performance while employing economical and biocompatible materials is an ongoing direction in the field of triboelectric nanogenerators (TENGs). Here, highly porous, biocompatible, cellulose nanofibril (CNF) composite-based TENGs are developed through an environmentally friendly freeze-drying approach. High tribopositivity materials, including silica fiber, human hair, and rabbit fur, are used as fillers in composite TENG fabrication for the first time to enhance the triboelectric output performance. Among them, a CNF/rabbit fur composite aerogel-based TENG offers the optimum energy generation ability with a high power density of 3.4 W m-2 achieved on a 4.7 MΩ load at a pressure of 30 kPa. Owing to the high output, the porous composite TENG exhibits an excellent energy harvesting performance and high sensitivity in detecting ultralight forces and monitoring human motion when used as a self-powered sensor. This work introduces a new class of highly porous composite TENGs that integrate biocompatibility, low cost, flexibility, high energy generation performance, and sensing sensitivity, as well as providing new strategies for high performance TENG design and fabrication.

17.
Chem Eng J ; 348: 786-798, 2018 Sep 15.
Article in English | MEDLINE | ID: mdl-30455583

ABSTRACT

Mimicking the mechanical properties of native tissues is a critical criterion for an ideal tissue engineering scaffold. However, most biodegradable synthetic materials, including polyester-based polyurethanes (PUs), consist of rigid polyester chains and have high crystallinity. They typically lack the elasticity of most human tissues. In this study, a new type of biodegradable PU with excellent elasticity was synthesized based on the controlled crosslinking of poly(ester ether) triblock copolymer diols and polycaprolactone (PCL) triols using urethane linkages. Three-dimensional (3D) porous scaffolds with a defined geometry, tunable microstructures, and adjustable mechanical properties were synthesized in situ using an isocyanate-ended copolymer, a tri-armed PCL, and a chain extender. The mechanical properties of the scaffolds can be easily tuned by changing the ratio of reactants, varying the solution concentration, or using a porogen. Notably, all of these scaffolds, although mostly made of rigid PCL chains, showed remarkable elasticity and cyclical properties. With an optimized molecular design, a maximum recovery rate of 99.8% was achieved. This was because the copolymer provided molecular flexibility while the long chain crosslinking of PCL triol hindered crystallization, thus making the PU behave like an amorphous elastic material. Moreover, the in vitro cell culture of 3T3 fibroblasts and MG63 osteoblast-like cells confirmed the biocompatibility of these PU scaffolds and revealed that scaffolds with different stiffnesses can stimulate the proliferation of different types of cells. All of these attributes make PU scaffolds extremely suitable for the regeneration of tissues that experience dynamic loading.

18.
J Mater Chem B ; 6: 3475-3485, 2018 Jun 07.
Article in English | MEDLINE | ID: mdl-30455952

ABSTRACT

When used as small-diameter vascular grafts (SDVGs), synthetic biomedical materials like polytetrafluoroethylene (PTFE) may induce thrombosis and intimal hyperplasia due to the lack of an endothelial cell layer. Modification of the PTFE in an aqueous solution is difficult because of its hydrophobicity. Herein, aiming to simultaneously promote endothelial cell affinity and antithrombogenicity, a mussel-inspired modification approach was employed to enable the grafting of various bioactive molecules like RGD and heparin. This approach involves a series of pragmatic steps including oxygen plasma treatment, dopamine (DA) coating, polyethylenimine (PEI) grafting, and RGD or RGD/heparin immobilization. Successful modification in each step was verified via Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). Plasma treatment increased the hydrophilicity of PTFE, thereby allowing it to be efficiently coated with dopamine. Grafting of dopamine, RGD, and heparin led to an increase in surface roughness and a decrease in water contact angle due to increased surface energy. Platelet adhesion increased after dopamine and RGD modification, but it dramatically decreased when heparin was introduced. All of these modifications, especially the incorporation of RGD, showed favorable effects on endothelial cell attachment, viability, and proliferation. Due to strong cell-substrate interactions between endothelial cells and RGD, the RGD/heparin-grafted PTFE demonstrated high endothelial cell affinity. This facile modification method is highly suitable for all hydrophobic surfaces and provides a promising technique for SDVG modification to stimulate fast endothelialization and effective antithrombosis.

19.
ACS Appl Mater Interfaces ; 10(36): 30596-30606, 2018 Sep 12.
Article in English | MEDLINE | ID: mdl-30114352

ABSTRACT

Triboelectric nanogenerators (TENGs) have been attracting a tremendous amount of attention since their discovery in 2012. Finding new means to enhance energy output is an ongoing pursuit. Herein, we introduce a new type of high-performance TENG composed of highly porous polyamide (PA) nanofiber mats and polyimide aerogel films. We have demonstrated that the thickness of the porous triboelectric materials, which is attained by stacking multiple layers of triboelectric materials, has a profound effect on the triboelectric output performance of TENGs. The triboelectric output increased when PA increased from one layer to six layers. However, it decreased when PA was further increased to 12 layers. With an optimum material thickness, a TENG with only a 2 cm2 effective device size achieved a high output voltage of 115 V and a current of 9.5 µA under a small compressive pressure (30 kPa). A peak power density of 1.84 W/m2 was achieved on a 4.7 MΩ external load. The TENG was able to light 60 light-emitting diodes easily and quickly charge capacitors with different capacitance to 6 V, indicating an outstanding energy harvesting ability. In addition, the performance of multiple TENGs connected in different ways, as well as the performance of TENGs in resistive/inductive/capacitive circuits, were investigated. These findings provide new insight into the working principles of TENGs in complex circuits.

20.
ACS Appl Mater Interfaces ; 10(24): 20897-20909, 2018 Jun 20.
Article in English | MEDLINE | ID: mdl-29863322

ABSTRACT

Integrating multifunctionality such as adhesiveness, stretchability, and self-healing ability on a single hydrogel has been a challenge and is a highly desired development for various applications including electronic skin, wound dressings, and wearable devices. In this study, a novel hydrogel was synthesized by incorporating polydopamine-coated talc (PDA-talc) nanoflakes into a polyacrylamide (PAM) hydrogel inspired by the natural mussel adhesive mechanism. Dopamine molecules were intercalated into talc and oxidized, which enhanced the dispersion of talc and preserved catechol groups in the hydrogel. The resulting dopamine-talc-PAM (DTPAM) hydrogel showed a remarkable stretchability, with over 1000% extension and a recovery rate over 99%. It also displayed strong adhesiveness to various substrates, including human skin, and the adhesion strength surpassed that of commercial double-sided tape and glue sticks, even as the hydrogel dehydrated over time. Moreover, the DTPAM hydrogel could rapidly self-heal and regain its mechanical properties without needing any external stimuli. It showed excellent biocompatibility and improved cell affinity to human fibroblasts compared to the PAM hydrogel. When used as a strain sensor, the DTPAM hydrogel showed high sensitivity, with a gauge factor of 0.693 at 1000% strain, and was capable of monitoring various human motions such as the bending of a finger, knee, or elbow and taking a deep breath. Therefore, this hydrogel displays favorable attributes and is highly suitable for use in human-friendly biological devices.


Subject(s)
Hydrogels/chemistry , Adhesives , Humans , Motion , Wound Healing
SELECTION OF CITATIONS
SEARCH DETAIL
...