Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Pharm ; 21(6): 2949-2959, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38685852

ABSTRACT

Crystallization is a widely used purification technique in the manufacture of active pharmaceutical ingredients (APIs) and precursor molecules. However, when impurities and desired compounds have similar molecular structures, separation by crystallization may become challenging. In such cases, some impurities may form crystalline solid solutions with the desired product during recrystallization. Understanding the molecular structure of these recrystallized solid solutions is crucial to devise methods for effective purification. Unfortunately, there are limited analytical techniques that provide insights into the molecular structure or spatial distribution of impurities that are incorporated within recrystallized products. In this study, we investigated model solid solutions formed by recrystallizing salicylic acid (SA) in the presence of anthranilic acid (AA). These two molecules are known to form crystalline solid solutions due to their similar molecular structures. To overcome challenges associated with the long 1H longitudinal relaxation times (T1(1H)) of SA and AA, we employed dynamic nuclear polarization (DNP) and 15N isotope enrichment to enable solid-state NMR experiments. Results of solid-state NMR experiments and DFT calculations revealed that SA and AA are homogeneously alloyed as a solid solution. Heteronuclear correlation (HETCOR) experiments and plane-wave DFT structural models provide further evidence of the molecular-level interactions between SA and AA. This research provides valuable insights into the molecular structure of recrystallized solid solutions, contributing to the development of effective purification strategies and an understanding of the physicochemical properties of solid solutions.


Subject(s)
Carbon Isotopes , Crystallization , Magnetic Resonance Spectroscopy , Nitrogen Isotopes , Salicylic Acid , ortho-Aminobenzoates , Magnetic Resonance Spectroscopy/methods , Salicylic Acid/chemistry , Crystallization/methods , Nitrogen Isotopes/chemistry , ortho-Aminobenzoates/chemistry , Carbon Isotopes/chemistry , Solutions/chemistry , Molecular Structure
2.
Chem Sci ; 14(41): 11296-11299, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37886103

ABSTRACT

Solid-state nuclear magnetic resonance (ssNMR) spectroscopy has found increasing application as a method for quantification and structure determination of solid forms (polymorphs) of organic solids and active pharmaceutical ingredients (APIs). However, ssNMR spectroscopy suffers from low sensitivity and resolution, making it challenging to detect dilute solid forms that may be present after recrystallization or reaction with co-formers. Cousin et al. (S. F. Cousin et al., Chem. Sci., 2023, https://doi.org/10.1039/D3SC02063K) have demonstrated that dynamic nuclear polarization (DNP) enhanced 13C cross-polarization (CP) saturation recovery experiments can be used to detect dilute polymorphic forms that are present within a mixture of solid forms. Enhancement of the NMR signal by DNP and differences in signal build-up rates for different polymorphs provide the sensitivity and contrast needed to resolve NMR signals from minor polymorphic forms. This method demonstrated by Cousin et al. should aid the discovery of solid drug forms.

3.
J Am Chem Soc ; 145(11): 6230-6239, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36892967

ABSTRACT

The library of imine-linked covalent organic frameworks (COFs) has grown significantly over the last two decades, featuring a variety of morphologies, pore sizes, and applications. An array of synthetic methods has been developed to expand the scope of the COF functionalities; however, most of these methods were designed to introduce functional scaffolds tailored to a specific application. Having a general approach to diversify COFs via late-stage incorporation of functional group handles would greatly facilitate the transformation of these materials into platforms for a variety of useful applications. Herein, we report a general strategy to introduce functional group handles in COFs via the Ugi multicomponent reaction. To demonstrate the versatility of this approach, we have synthesized two COFs with hexagonal and kagome morphologies. We then introduced azide, alkyne, and vinyl functional groups, which could be readily utilized for a variety of post-synthetic modifications. This facile approach enables the functionalization of any COFs containing imine linkages.

SELECTION OF CITATIONS
SEARCH DETAIL
...