Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 62(32): 12793-12802, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37531406

ABSTRACT

Plant growth can be controlled and freed from natural environmental interference through indoor plant cultivation. Artificial light sources with better quality are required to promote indoor plant growth. In this study, we used a simple high-temperature solid-state reaction to synthesize high-efficiency Ce3+-activated NaGdSiO4 (NGSO) phosphors. X-ray diffraction and Rietveld refinement were performed to determine the detailed crystal structure of the NGSO:Ce3+ phosphors. The morphology of NGSO:Ce3+ and the elemental state of Ce3+ were measured and analyzed. Under near-ultraviolet (n-UV) light excitation, the Ce3+-activated NGSO phosphors exhibit a broad emission band from 375 to 500 nm, and their emission peaks are at approximately 401 nm. This asymmetrical blue emission band is caused by the spin-allowed 5d → 4f transition of Ce3+ and overlaps well with the blue absorption region of carotenoids and chlorophyll. The temperature-dependent luminescence spectra were utilized to assess the thermal stability of NGSO:Ce3+. The external quantum efficiency (EQE) was measured to be 60.91%, and the internal quantum efficiency (IQE) was measured to be 73.39%. A blue LED device assembled from the NGSO:Ce3+ phosphor has demonstrated the application potential in accelerating plant growth.

2.
Dalton Trans ; 51(43): 16639-16647, 2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36278427

ABSTRACT

Recently, blue-emitting phosphors have attracted great interest due to their application in full-spectrum white light illumination. In this paper, a novel blue-emitting MgAl2Si4O6N4:Eu2+ phosphor was successfully synthesized through the solid-state reaction method in a reducing atmosphere. Under the excitation of near-ultraviolet (n-UV) light, the MgAl2Si4O6N4:0.02Eu2+ phosphor effectively emits a broad blue emission band centered at 456 nm with the FWHM as large as 81 nm. With the increasing Eu2+ concentration, the emission bands of MgAl2Si4O6N4:Eu2+ shift to a shorter wavelength and the FWHMs broaden gradually. Moreover, the MgAl2Si4O6N4:0.02Eu2+ phosphor exhibits a slight thermal quenching at a higher temperature. After fabricating the as-prepared MgAl2Si4O6N4:0.02Eu2+ phosphor into a white LED device, the intense neutral white light emission is obtained with excellent CRI (87.4) and CCT (5645 K). These results suggest that the blue MgAl2Si4O6N4:Eu2+ phosphor is a promising candidate in n-UV excited white LEDs.

3.
Molecules ; 27(15)2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35897927

ABSTRACT

The high price of noble metal resources limits its commercial application and stimulates the potential for developing new catalysts that can replace noble metal catalysts. Tungsten-based catalysts have become the most important substitutes for noble metal catalysts because of their rich resources, friendly environment, rich valence and better adsorption enthalpy. However, some challenges still hinder the development of tungsten-based catalysts, such as limited catalytic activity, instability, difficult recovery, and so on. At present, the focus of tungsten-based catalyst research is to develop a satisfactory material with high catalytic performance, excellent stability and green environmental protection, mainly including tungsten atomic catalysts, tungsten metal nanocatalysts, tungsten-based compound nanocatalysts, and so on. In this work, we first present the research status of these tungsten-based catalysts with different sizes, existing forms, and chemical compositions, and further provide a basis for future perspectives on tungsten-based catalysts.


Subject(s)
Metals , Tungsten , Catalysis , Tungsten/chemistry
4.
Inorg Chem ; 61(7): 3263-3273, 2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35133813

ABSTRACT

The modifications of local structure in solid solution are a crucial step to regulate the photoluminescence properties of rare-earth ion-based phosphors. However, the structural diversity of host matrices and the uncertain occupation of activators make it challenging to obtain phosphors with both high stability and tailored emission. Herein, We synthesized a series of ß-Ca3(PO4)2-type Ca8ZnGa(1-x)Lax(PO4)7:Eu2+ solid solution phosphors by design. By modifying the Ga/La ratio, controllable regulation of the emission spectrum and thermal stability of the phosphors can be achieved at the same time. The introduction of La3+ can regulate the crystal field splitting strength of the Eu2+ activators, causing redshifts in the emission spectrum while increasing Ga3+ content will lead to enhanced energy transfer between the oxygen vacancy and Eu2+, as well as improved thermal stability. Through local structure modification, the spectrum and thermal stability of phosphors can be facilely tuned. The results indicate that this series of phosphors have versatile potentials in various applications.

5.
Chemistry ; 28(11): e202102787, 2022 Feb 19.
Article in English | MEDLINE | ID: mdl-34961998

ABSTRACT

Silicoaluminophosphate zeolite (SAPO-34) has been attracting increasing attention due to its excellent form selection and controllability in the chemical industry, as well as being one of the best industrial catalysts for methanol-to-olefin (MTO) reaction conversion. However, as a microporous molecular sieve, SAPO-34 easily generates carbon deposition and rapidly becomes inactivated. Therefore, it is necessary to reduce the crystal size of the zeolite or to introduce secondary macropores into the zeolite crystal to form a hierarchical structure in order to improve the catalytic effect. In this review, the synthesis methods of conventional SAPO-34 molecular sieves, hierarchical SAPO-34 molecular sieves and nanosized SAPO-34 molecular sieves are introduced, and the properties of the synthesized SAPO-34 molecular sieves are described, including the phase, morphology, pore structure, acid source, and catalytic performance, in particular with respect to the synthesis of hierarchical SAPO-34 molecular sieves. We hope that the review can provide guidance to the preparation of the SAPO-34 catalysts, and stimulate the future development of high-performance hierarchical SAPO-34 catalysts to meet the growing demands of the material and chemical industries.

6.
Nanoscale ; 13(7): 4167-4176, 2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33576762

ABSTRACT

Metal selenide has attracted much attention for use in rechargeable batteries due to its excellent conductivity and considerable capacity. However, it is still necessary to achieve a long cycle life and excellent Na+ storage performance to enable its practical application. Volume expansion and poor stability of selenide during operation also hinder its industrial applications. As metal-organic frameworks and aerogels possess porous structures, carbon materials derived from them can effectively reduce the volume expansion of selenide, resulting in improving cycling stability and enhancing Na+ storage. In this work, CoSe/C@C composites with a hierarchical structure were successfully prepared by freeze-drying and in situ selenization as anode materials. The CoSe/C@C composites exhibited superior cycling stability (a capacity of 332.3 mA h g-1) and capacity retention (63.1% compared to the second cycle) at 200 mA g-1, after 500 cycles. CoSe/C@C also exhibited a high rate performance of 403.4 mA h g-1 at 2 A g-1. Moreover, thanks to the high capacitance contribution and some redox reactions during cycling, the CoSe/C@C electrode possesses outstanding rate capability.

7.
Nat Commun ; 11(1): 3836, 2020 07 31.
Article in English | MEDLINE | ID: mdl-32737288

ABSTRACT

Nowadays, energy-saving building materials are important for reducing indoor energy consumption by enabling better thermal insulation, promoting effective sunlight harvesting and offering comfortable indoor lighting. Here, we demonstrate a novel scalable aesthetic transparent wood (called aesthetic wood hereafter) with combined aesthetic features (e.g. intact wood patterns), excellent optical properties (an average transmittance of ~ 80% and a haze of ~ 93%), good UV-blocking ability, and low thermal conductivity (0.24 W m-1K-1) based on a process of spatially selective delignification and epoxy infiltration. Moreover, the rapid fabrication process and mechanical robustness (a high longitudinal tensile strength of 91.95 MPa and toughness of 2.73 MJ m-3) of the aesthetic wood facilitate good scale-up capability (320 mm × 170 mm × 0.6 mm) while saving large amounts of time and energy. The aesthetic wood holds great potential in energy-efficient building applications, such as glass ceilings, rooftops, transparent decorations, and indoor panels.

8.
Small ; 16(31): e1907212, 2020 08.
Article in English | MEDLINE | ID: mdl-32597027

ABSTRACT

3D printing of lignocellulosic biomass (cellulose, hemicellulose, and lignin) has attracted increasing attention by using this abundant, sustainable, and ecofriendly material. While cellulose can be easily tailored into a highly viscous ink for 3D printing, after solvent evaporation, the final printed structures become highly porous, fragile, and easily fall apart in water due to its hydrophilic nature. Lignin, another crucial component of natural lignocellulose, has not yet been reported for ink printing due to its unfavorable rheological behavior. Herein, a low-cost direct ink printing strategy is developed to fabricate lignin-based 3D structures with lignin no further refined and a more compact microstructure as well as different functionalities compared with printed cellulose. By using a soft triblock copolymer as the crosslinking agent, the rheology of lignin-based inks can be adjusted from soft to rigid, and even enables vertical printing which requires stiff and self-supporting features. The lignin-based inks contain less water (≈40 wt%) and exhibit a much denser, stiffer structure, resulting in a wet tensile strength of ≈30 MPa, compared to only ≈0.6 MPa for printed cellulose. In addition, the unique macromolecular structure of lignin also demonstrates significantly improved stability in water and under heat, as well as UV-blocking performance.


Subject(s)
Ink , Lignin , Cellulose , Hydrogels , Printing, Three-Dimensional
9.
ACS Nano ; 14(5): 5194-5202, 2020 05 26.
Article in English | MEDLINE | ID: mdl-32275131

ABSTRACT

Lightweight structural materials are critical in construction and automobile applications. In past centuries, there has been great success in developing strong structural materials, such as steels, concrete, and petroleum-based composites, most of which, however, are either too heavy, high cost, or nonrenewable. Biosourced composites are attractive alternatives to conventional structural materials, especially when high mechanical strength is presented. Here we demonstrate a strong, lightweight bio-based structural material derived from bamboo via a two-step manufacturing process involving partial delignification followed by microwave heating. Partial delignification is a critical step prior to microwave heating as it makes the cell walls of bamboo softer and exposes more cellulose nanofibrils, which enables superior densification of the bamboo structure via heat-driven shrinkage. Additionally, microwave heating, as a fast and uniform heating method, can drive water out of the bamboo structure, yet without destroying the material's structural integrity, even after undergoing a large volume reduction of 28.9%. The resulting microwave-heated delignified bamboo structure demonstrates outstanding mechanical properties with a nearly 2-times improved tensile strength, 3.2-times enhanced toughness, and 2-times increased bending strength compared to natural bamboo. Additionally, the specific tensile strength of the modified bamboo structure reaches 560 MPa cm3 g-1, impressive given that its density is low (1.0 g cm-3), outperforming common structural materials, such as steels, metal alloys, and petroleum-based composites. These excellent mechanical properties combined with the resource abundance, renewable and sustainable features of bamboo, as well as the rapid, scalable manufacturing process, make this strong microwave-processed bamboo structure attractive for lightweight, energy-efficient engineering applications.

10.
Adv Mater ; 32(10): e1906308, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31999009

ABSTRACT

Lightweight structural materials with high strength are desirable for advanced applications in transportation, construction, automotive, and aerospace. Bamboo is one of the fastest growing plants with a peak growth rate up to 100 cm per day. Here, a simple and effective top-down approach is designed for processing natural bamboo into a lightweight yet strong bulk structural material with a record high tensile strength of ≈1 GPa and toughness of 9.74 MJ m-3 . More specifically, bamboo is densified by the partial removal of its lignin and hemicellulose, followed by hot-pressing. Long, aligned cellulose nanofibrils with dramatically increased hydrogen bonds and largely reduced structural defects in the densified bamboo structure contribute to its high mechanical tensile strength, flexural strength, and toughness. The low density of lignocellulose in the densified bamboo leads to a specific strength of 777 MPa cm3 g-1 , which is significantly greater than other reported bamboo materials and most structural materials (e.g., natural polymers, plastics, steels, and alloys). This work demonstrates a potential large-scale production of lightweight, strong bulk structural materials from abundant, fast-growing, and sustainable bamboo.

11.
ACS Nano ; 13(9): 9993-10001, 2019 09 24.
Article in English | MEDLINE | ID: mdl-31502821

ABSTRACT

Developing advanced building materials with both excellent thermal insulating and optical properties to replace common glass (thermal conductivity of ∼1 W m-1 K-1) is highly desirable for energy-efficient applications. The recent development of transparent wood suggests a promising building material with many advantages, including high optical transmittance, tunable optical haze, and excellent thermal insulation. However, previous transparent wood materials generally have a high haze (typically greater than 40%), which is a major obstacle for their practical application in the replacement of glass. In this work, we fabricate a clear wood material with an optical transmittance as high as 90% and record-low haze of 10% using a delignification and polymer infiltration method. The significant removal of wood components results in a highly porous microstructure, much thinner wood cell walls, and large voids among the cellulose fibrils, which a polymer can easily enter, leading to the dense structure of the clear wood. The separated cellulose fibrils that result from the removal of the wood components dramatically weaken light scattering in the clear wood, which combined with the highly dense structure produces both high transmittance and extremely low haze. In addition, the clear wood exhibits an excellent thermal insulation property with a low thermal conductivity of 0.35 W m-1 K-1 (one-third of ordinary glass); thus, the application of clear wood can greatly improve the energy efficiency of buildings. The developed clear wood, combining excellent thermal insulating and optical properties, represents an attractive alternative to common glass toward energy-efficient buildings.

12.
Dalton Trans ; 48(31): 11791-11802, 2019 Aug 06.
Article in English | MEDLINE | ID: mdl-31298247

ABSTRACT

The luminescence spectra of some trivalent rare-earth ions in a garnet host present interesting multisite structures; however, their mechanism is still not fully understood. In this study, for the first time, we directly observed two luminescence centers of Ce3+ at a single site in a novel garnet Ca3Sc2Ge3O12 phosphor. The spectral characteristics of the two luminescence centers were clearly identified using site-selective and time-resolved spectroscopy. Luminescence excitation was observed at 425 nm and 450 nm, corresponding to emissions at 490 (Ce(i)) nm and 530 (Ce(ii)) nm. The decay curves confirmed the existence of energy transfer from Ce(i) to Ce(ii). The potential mechanisms of the multisite luminescence are also discussed. This study gives a new insight into the concentration-dependent red-shift and inhomogeneous broadening of the Ce3+ emission band in the garnet phosphor. The title phosphor showed excellent thermal stability, with more than 90% of the initial intensity at the functioning temperature (323 K). Finally, a white LED lamp was fabricated, which exhibited an excellent color rendering index (82.3) and a proper correlated color temperature (3582 K). These results demonstrate that Ca3Sc2Ge3O12:Ce3+ is highly promising to serve as a blue-pumped phosphor for white LEDs.

13.
Science ; 364(6442): 760-763, 2019 May 24.
Article in English | MEDLINE | ID: mdl-31123132

ABSTRACT

Reducing human reliance on energy-inefficient cooling methods such as air conditioning would have a large impact on the global energy landscape. By a process of complete delignification and densification of wood, we developed a structural material with a mechanical strength of 404.3 megapascals, more than eight times that of natural wood. The cellulose nanofibers in our engineered material backscatter solar radiation and emit strongly in mid-infrared wavelengths, resulting in continuous subambient cooling during both day and night. We model the potential impact of our cooling wood and find energy savings between 20 and 60%, which is most pronounced in hot and dry climates.

14.
Adv Mater ; 31(23): e1900498, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30989752

ABSTRACT

Emerging solar desalination by interfacial evaporation shows great potential in response to global water scarcity because of its high solar-to-vapor efficiency, low environmental impact, and off-grid capability. However, solute accumulation at the heating interface has severely impacted the performance and long-term stability of current solar evaporation systems. Here, a self-regenerating solar evaporator featuring excellent antifouling properties using a rationally designed artificial channel-array in a natural wood substrate is reported. Upon solar evaporation, salt concentration gradients are formed between the millimeter-sized drilled channels (with a low salt concentration) and the microsized natural wood channels (with a high salt concentration) due to their different hydraulic conductivities. The concentration gradients allow spontaneous interchannel salt exchange through the 1-2 µm pits, leading to the dilution of salt in the microsized wood channels. The drilled channels with high hydraulic conductivities thus function as salt-rejection pathways, which can rapidly exchange the salt with the bulk solution, enabling the real-time self-regeneration of the evaporator. Compared to other salt-rejection designs, the solar evaporator exhibits the highest efficiency (≈75%) in a highly concentrated salt solution (20 wt% NaCl) under 1 sun irradiation, as well as long-term stability (over 100 h of continuous operation).

15.
Nat Mater ; 18(6): 608-613, 2019 06.
Article in English | MEDLINE | ID: mdl-30911121

ABSTRACT

Converting low-grade heat into useful electricity requires a technology that is efficient and cost effective. Here, we demonstrate a cellulosic membrane that relies on sub-nanoscale confinement of ions in oxidized and aligned cellulose molecular chains to enhance selective diffusion under a thermal gradient. After infiltrating electrolyte into the cellulosic membrane and applying an axial temperature gradient, the ionic conductor exhibits a thermal gradient ratio (analogous to the Seebeck coefficient in thermoelectrics) of 24 mV K-1-more than twice the highest value reported until now. We attribute the enhanced thermally generated voltage to effective sodium ion insertion into the charged molecular chains of the cellulosic membrane, which consists of type II cellulose, while this process does not occur in natural wood or type I cellulose. With this material, we demonstrate a flexible and biocompatible heat-to-electricity conversion device via nanoscale engineering based on sustainable materials that can enable large-scale manufacture.

SELECTION OF CITATIONS
SEARCH DETAIL
...