Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
Zhongguo Zhong Yao Za Zhi ; 48(7): 1899-1907, 2023 Apr.
Article in Chinese | MEDLINE | ID: mdl-37282966

ABSTRACT

To study the quality control of three traditional Chinese medicines derived from Gleditsia sinensis [Gleditsiae Sinensis Fructus(GSF), Gleditsiae Fructus Abnormalis(GFA), and Gleditsiae Spina(GS)], this paper established a multiple reaction monitoring(MRM) approach based on ultra-high performance liquid chromatography-triple quadrupole-linear ion-trap mass spectrometry(UHPLC-Q-Trap-MS). Using an ACQUITY UPLC BEH C_(18) column(2.1 mm × 100 mm, 1.7 µm), gradient elution was performed at 40 ℃ with water containing 0.1% formic acid-acetonitrile as the mobile phase running at 0.3 mL·min~(-1), and the separation and content determination of ten chemical constituents(e.g., saikachinoside A, locustoside A, orientin, taxifolin, vitexin, isoquercitrin, luteolin, quercitrin, quercetin, and apigenin) in GSF, GFA, and GS were enabled within 31 min. The established method could quickly and efficiently determine the content of ten chemical constituents in GSF, GFA, and GS. All constituents showed good linearity(r>0.995), and the average recovery rate was 94.09%-110.9%. The results showed that, the content of two alkaloids in GSF(2.03-834.75 µg·g~(-1)) was higher than that in GFA(0.03-10.41 µg·g~(-1)) and GS(0.04-13.66 µg·g~(-1)), while the content of eight flavonoids in GS(0.54-2.38 mg·g~(-1)) was higher than that in GSF(0.08-0.29 mg·g~(-1)) and GFA(0.15-0.32 mg·g~(-1)). These results provide references for the quality control of G. sinensis-derived TCMs.


Subject(s)
Alkaloids , Drugs, Chinese Herbal , Flavonoids/analysis , Chromatography, High Pressure Liquid/methods , Mass Spectrometry
2.
J Agric Food Chem ; 71(24): 9391-9403, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37294034

ABSTRACT

Ginseng extracts are extensively used as raw materials for food supplements and herbal medicines. This study aimed to characterize ginsenosides obtained from six Panax plant extracts (Panax ginseng, red ginseng, Panax quinquefolius, Panax notoginseng, Panax japonicus, and Panax japonicus var. major) and compared them with their in vitro metabolic profiles mediated by rat intestinal microbiota. Ultrahigh-performance liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry (UHPLC/IM-QTOF-MS) with scheduled multiple reaction monitoring (sMRM) quantitation methods were developed to characterize and compare the ginsenoside composition of the different extracts. After in vitro incubation, 248 ginsenosides/metabolites were identified by UHPLC/IM-QTOF-MS in six biotransformed samples. Deglycosylation was determined to be the main metabolic pathway of ginsenosides, and protopanaxadiol-type and oleanolic acid-type saponins were easier to be easily metabolized. Compared with the ginsenosides in plant extracts, those remaining in six biotransformed samples were considerably fewer after biotransformation for 8 h. However, the compositional differences in four subtypes of the ginsenosides among the six Panax plants became more distinct.


Subject(s)
Gastrointestinal Microbiome , Ginsenosides , Panax notoginseng , Rats , Animals , Ginsenosides/chemistry , Chromatography, High Pressure Liquid/methods , Mass Spectrometry/methods , Chromatography, Liquid , Panax notoginseng/chemistry , Plant Extracts/chemistry
3.
J Chromatogr A ; 1700: 464042, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37163941

ABSTRACT

One bottleneck problem in the quality control of traditional Chinese medicine (TCM) is the accurate identification of easily confused herbal medicines from Chinese patent medicine (CPM). Ginseng products derived from the multiple parts (e.g., root/rhizome, leaf, and flower bud) of multiple Panax species (P. ginseng, P. quinquefolius, P. notoginseng, P. japonicus, and P. japonicus var. major) are globally popular; however, their authentication is very challenging. Using online comprehensive two-dimensional liquid chromatography (LC × LC), we propose the concept of a three-dimensional characteristic chromatogram (3D CC) by integrating enhanced LC × LC separation and a contour plot that visualizes the stereoscopic chromatographic peaks and examine its performance in authenticating various ginseng products. Targeted at the resolution of 17 ginsenoside markers, an online LC × LC/UV system with a 56 min analysis time was constructed: a CORTECS UPLC Shield RP 18 column running at 0.1 mL/min for the first-dimensional chromatography and a Poroshell SB-Aq column at 2.0 mL/min in shift gradient mode in the second dimension of separation. In particular, ginsenosides Rg1/Re and Rc/Ra1 were well resolved. According to the presence/absence of stereo peaks consistent with the main ginsenoside markers in the 3D CC and the depth of shade (depending on peak volume), it was feasible to use a single method to identify and distinguish among 12 different ginseng species as the drug materials and the use of ginseng simultaneously from 21 CPMs. Conclusively, a practical solution enabling the accurate identification of easily confused TCMs was provided, covering both the drug materials and the compound preparations.


Subject(s)
Drugs, Chinese Herbal , Ginsenosides , Panax , Plants, Medicinal , Panax/chemistry , Ginsenosides/analysis , Nonprescription Drugs , Chromatography, High Pressure Liquid/methods , Plants, Medicinal/chemistry , Drugs, Chinese Herbal/chemistry
4.
Molecules ; 27(24)2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36558182

ABSTRACT

The flower bud of Panax notoginseng (PNF) consumed as a tonic shows potential in the prevention and treatment of cardiovascular diseases. To identify the contained multi-components and, in particular, to clarify which components can be absorbed and what metabolites are transformed, unveiling the effective substances of PNF is of vital significance. A unique ultrahigh-performance liquid chromatography/ion mobility quadrupole time-of-flight mass spectrometry (UHPLC/IM-QTOF-MS) profiling approach and efficient data processing by the UNIFITM bioinformatics platform were employed to comprehensively identify the multi-components of PNF and the related metabolites in the plasma of rats after oral administration (at a dose of 3.6 g/kg). Two MS2 data acquisition modes operating in the negative electrospray ionization mode, involving high-definition MSE (HDMSE) and data-dependent acquisition (DDA), were utilized aimed to extend the coverage and simultaneously ensure the quality of the MS2 spectra. As a result, 219 components from PNF were identified or tentatively characterized, and 40 thereof could be absorbed. Moreover, 11 metabolites were characterized from the rat plasma. The metabolic pathways mainly included the phase I (deglycosylation and oxidation). To the best of our knowledge, this is the first report that systematically studies the in vivo metabolites of PNF, which can assist in better understanding its tonifying effects and benefit its further development.


Subject(s)
Drugs, Chinese Herbal , Panax notoginseng , Rats , Animals , Panax notoginseng/chemistry , Chromatography, High Pressure Liquid/methods , Mass Spectrometry , Plasma/chemistry , Flowers/chemistry , Drugs, Chinese Herbal/chemistry
5.
J Agric Food Chem ; 70(42): 13796-13807, 2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36239255

ABSTRACT

Data-dependent acquisition (DDA) is widely utilized for metabolite identification in natural product research and food science, which, however, can suffer from low coverage. A potential solution to improve DDA coverage is to include the precursor ions list (PIL). Here, we aimed to construct a PIL-containing DDA strategy based on an in-house library of ginsenosides (VLG) and identify ginsenosides simultaneously from seven Panax herbal extracts. VLG, combined with mass defect filtering, could efficiently screen the ginsenoside precursors and elaborate the separate PIL involved in DDA for each ginseng extract. Consequently, we could characterize 500 ginsenosides, including 176 ones with unknown masses. Using the Panax ginseng extract, the superiority of this strategy was embodied in targeting more known ginsenoside masses and newly acquiring the MS2 spectra of 13 components. Conclusively, knowledge-based large-scale molecular prediction and PIL-DDA can represent a powerful targeted/untargeted strategy beneficial to novel natural compound discovery.


Subject(s)
Biological Products , Ginsenosides , Panax , Biological Products/metabolism , Chromatography, High Pressure Liquid , Ginsenosides/metabolism , Ions/metabolism , Libraries, Digital , Panax/metabolism , Plant Extracts/metabolism
6.
Molecules ; 27(11)2022 Jun 06.
Article in English | MEDLINE | ID: mdl-35684583

ABSTRACT

Wenxin granule (WXG) is a popular traditional Chinese medicine (TCM) preparation for the treatment of arrhythmia disease. Potent analytical technologies are needed to elucidate its chemical composition and assess the quality differences among multibatch samples. In this work, both a multicomponent characterization and quantitative assay of WXG were conducted using two liquid chromatography-mass spectrometry (LC-MS) approaches. An ultra-high performance liquid chromatography-ion mobility quadrupole time-of-flight mass spectrometry (UHPLC/IM-QTOF-MS) approach combined with intelligent peak annotation workflows was developed to characterize the multicomponents of WXG. A hybrid scan approach enabling alternative data-independent and data-dependent acquisitions was established. We characterized 205 components, including 92 ginsenosides, 53 steroidal saponins, 14 alkaloids, and 46 others. Moreover, an optimized scheduled multiple reaction monitoring (sMRM) method was elaborated, targeting 24 compounds of WXG via ultra-high performance liquid chromatography-triple quadrupole linear ion trap mass spectrometry (UHPLC/QTrap-MS), which was validated based on its selectivity, precision, stability, repeatability, linearity, sensitivity, recovery, and matrix effect. By applying this method to 27 batches of WXG samples, the content variations of multiple markers from Notoginseng Radix et Rhizoma (21) and Codonopsis Radix (3) were depicted. Conclusively, we achieved the comprehensive multicomponent characterization and holistic quality assessment of WXG by targeting the non-volatile components.


Subject(s)
Ginsenosides , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid , Drugs, Chinese Herbal , Ginsenosides/analysis , Mass Spectrometry/methods
7.
Zhongguo Zhong Yao Za Zhi ; 46(19): 5044-5051, 2021 Oct.
Article in Chinese | MEDLINE | ID: mdl-34738400

ABSTRACT

Chronic unpredicted mild stress(CUMS) combined with isolated feeding was used to induce depressed rat model. The anti-depressant effects of Zhizichi Decoction(ZZCD) and its solid fermented product(ZZC) were analyzed by behavioral test and comparison of pathological tissues of hippocampus and liver, metabolic characteristics of intestinal flora, and relative abundance of species. The results showed that ZZC could increase sucrose preference, shorten the immobility time in the forced swim test and tail suspension test(P<0.05), and repair damaged hippocampus and liver tissues, and the effect was superior to that of ZZCD. The results of Biolog ECO plates showed that the average well color development(AWCD) of intestinal flora in the model group significantly decreased and the metabolic levels of sugar and amino acids were reduced, while the AWCD of the treatment groups increased. The metabolic levels of the two carbon sources were improved in the ZZC group, while only sugar metabolic level was elevated in the ZZCD group. Metagenomic analysis of intestinal flora showed that the ratio of Firmicutes/Bacteroidetes was 3.87 in the control group, 21.77 in the model group, 5.91 in the ZZC group, and 18.48 in the ZZCD group. Lactobacillus increased by 3.28 times, and Prevotella and Bacteroidetes decreased by 75.59% and 76.39%, respectively in the model group as compared with that in the control group. Lactobacillus decreased by 31.13%, and Prevotella and Bacteroidetes increased by more than three times in the ZZC group as compared with that in the model group, while the corresponding changes in the ZZCD group were not significant. ZZC could improve depression-like beha-viors by regulating the structure of intestinal flora and metabolic functions and repairing damaged hippocampus and liver tissues in depressed rats, showing an anti-depressant effect superior to that of ZZCD. This study is expected to provide a basis for the development of new anti-depressant food products.


Subject(s)
Gastrointestinal Microbiome , Hippocampus , Animals , Depression/drug therapy , Disease Models, Animal , Fermentation , Rats , Stress, Psychological
SELECTION OF CITATIONS
SEARCH DETAIL
...