Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Immun Inflamm Dis ; 12(2): e1171, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38415978

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic has had a severe impact on population health. The genetic determinants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in southern Bangladesh are not well understood. METHODS: This study aimed to determine the genomic variation in SARS-CoV-2 genomes that have evolved over 2 years of the pandemic in southern Bangladesh and their association with disease outcomes and virulence of this virus. We investigated demographic variables, disease outcomes of COVID-19 patients and genomic features of SARS-CoV-2. RESULTS: We observed that the disease severity was significantly higher in adults (85.3%) than in children (14.7%), because the expression of angiotensin-converting enzyme-2 (ACE-2) diminishes with ageing that causes differences in innate and adaptive immunity. The clade GK (n = 66) was remarkable between June 2021 and January 2022. Because of the mutation burden, another clade, GRA started a newly separated clustering in December 2021. The burden was significantly higher in GRA (1.5-fold) highlighted in mild symptoms of COVID-19 patients than in other clades (GH, GK, and GR). Mutations were accumulated mainly in S (22.15 mutations per segment) and ORF1ab segments. Missense (67.5%) and synonymous (18.31%) mutations were highly noticed in adult patients with mild cases rather than severe cases, especially in ORF1ab segments. Moreover, we observed many unique mutations in S protein in mild cases compared to severe, and homology modeling revealed that those might cause more folding in the protein's alpha helix and beta sheets. CONCLUSION: Our study identifies some risk factors such as age comorbidities (diabetes, hypertension, and renal disease) that are associated with severe COVID-19, providing valuable insight regarding prioritizing vaccination for high-risk individuals and allocating health care and resources. The findings of this work outlined the knowledge and mutational basis of SARS-CoV-2 for the next treatment steps. Further studies are needed to confirm the effects of structural and functional proteins of SARS-CoV-2 in detail for monitoring the emergence of new variants in future.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Child , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/genetics , Bangladesh/epidemiology , Adaptive Immunity , Aging
2.
Front Public Health ; 11: 1168613, 2023.
Article in English | MEDLINE | ID: mdl-37483933

ABSTRACT

Waterfowl are considered to be natural reservoirs of the avian influenza virus (AIV). However, the dynamics of transmission and evolutionary patterns of AIV and its subtypes within duck farms in Bangladesh remain poorly documented. Hence, a cross-sectional study was conducted in nine districts of Bangladesh between 2019 and 2021, to determine the prevalence of AIV and its subtypes H5 and H9, as well as to identify risk factors and the phylodynamics of H5N1 clades circulating in domestic duck farms. The oropharyngeal and cloacal swab samples were tested for the AIV Matrix gene (M-gene) followed by H5, H7, and H9 subtypes using rRT-PCR. The exploratory analysis was performed to estimate AIV and its subtype prevalence in different production systems, and multivariable logistic regression model was used to identify the risk factors that influence AIV infection in ducks. Bayesian phylogenetic analysis was conducted to generate a maximum clade credibility (MCC) tree and the maximum likelihood method to determine the phylogenetic relationships of the H5N1 viruses isolated from ducks. AIV was detected in 40% (95% CI: 33.0-48.1) of the duck farms. The prevalence of AIV was highest in nomadic ducks (39.8%; 95% CI: 32.9-47.1), followed by commercial ducks (24.6%; 95% CI: 14.5-37.3) and backyard ducks (14.4%; 95% CI: 10.5-19.2). The H5 prevalence was also highest in nomadic ducks (19.4%; 95% CI: 14.0-25.7). The multivariable logistic regression model revealed that ducks from nomadic farms (AOR: 2.4; 95% CI: 1.45-3.93), juvenile (AOR: 2.2; 95% CI: 1.37-3.61), and sick ducks (AOR: 11.59; 95% CI: 4.82-32.44) had a higher risk of AIV. Similarly, the likelihood of H5 detection was higher in sick ducks (AOR: 40.8; 95% CI: 16.3-115.3). Bayesian phylogenetic analysis revealed that H5N1 viruses in ducks belong to two distinct clades, 2.3.2.1a, and 2.3.4.4b. The clade 2.3.2.1a (reassorted) has been evolving silently since 2015 and forming at least nine subgroups based on >90% posterior probability. Notably, clade 2.3.4.4b was introduced in ducks in Bangladesh by the end of the year 2020, which was genetically similar to viruses detected in wild birds in Japan, China, and Africa, indicating migration-associated transmission of an emerging panzootic clade. We recommend continuing AIV surveillance in the duck production system and preventing the intermingling of domestic ducks with migratory waterfowl in wetlands.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza A virus , Influenza in Birds , Animals , Ducks , Influenza A Virus, H5N1 Subtype/genetics , Influenza in Birds/epidemiology , Bangladesh/epidemiology , Phylogeny , Cross-Sectional Studies , Bayes Theorem , Farms , Influenza A virus/genetics
3.
Hum Genomics ; 17(1): 58, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37420264

ABSTRACT

BACKGROUND: Wastewater-based epidemiological surveillance has been considered a powerful tool for early detection and monitoring of the dynamics of SARS-CoV-2 and its lineages circulating in a community. This study is aimed to investigate the complexity of SARS-CoV-2 infection dynamics in Dhaka city by examining its genetic variants in wastewater. Also, the study seeks to determine a connection between the SARS-CoV-2 variations detected in clinical testing and those found in wastewater samples. RESULTS: Out of 504 samples tested in RT-qPCR, 185 (36.7%) tested positive for SARS-CoV-2 viral RNA. The median log10 concentration of SARS-CoV-2 N gene copies/Liter of wastewater (gc/L) was 5.2, and the median log10 concentration of ORF1ab was 4.9. To further reveal the genetic diversity of SARS-CoV-2, ten samples with ORF1ab real-time RT-PCR cycle threshold (Ct) values ranging from 28.78 to 32.13 were subjected to whole genome sequencing using nanopore technology. According to clade classification, sequences from wastewater samples were grouped into 4 clades: 20A, 20B, 21A, 21J, and the Pango lineage, B.1, B.1.1, B.1.1.25, and B.1.617.2, with coverage ranging from 94.2 to 99.8%. Of them, 70% belonged to clade 20B, followed by 10% to clade 20A, 21A, and 21J. Lineage B.1.1.25 was predominant in Bangladesh and phylogenetically related to the sequences from India, the USA, Canada, the UK, and Italy. The Delta variant (B.1.617.2) was first identified in clinical samples at the beginning of May 2021. In contrast, we found that it was circulating in the community and was detected in wastewater in September 2020. CONCLUSION: Environmental surveillance is useful for monitoring temporal and spatial trends of existing and emerging infectious diseases and supports evidence-based public health measures. The findings of this study supported the use of wastewater-based epidemiology and provided the baseline data for the dynamics of SARS-CoV-2 variants in the wastewater environment in Dhaka, Bangladesh.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Bangladesh/epidemiology , COVID-19/epidemiology , Public Health Surveillance , Wastewater , Complement System Proteins , RNA
4.
Microbiol Spectr ; 11(3): e0494622, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37212605

ABSTRACT

Whole-genome sequencing (WGS) of influenza A virus (IAV) is crucial for identifying diverse subtypes and newly evolved variants and for selecting vaccine strains. In developing countries, where facilities are often inadequate, WGS is challenging to perform using conventional next-generation sequencers. In this study, we established a culture-independent, high-throughput native barcode amplicon sequencing workflow that can sequence all influenza subtypes directly from a clinical specimen. All segments of IAV in 19 clinical specimens, irrespective of their subtypes, were amplified simultaneously using a two-step reverse transcriptase PCR (RT-PCR) system. First, the library was prepared using the ligation sequencing kit, barcoded individually using the native barcodes, and sequenced on the MinION MK 1C platform with real-time base-calling. Then, subsequent data analyses were performed with the appropriate tools. WGS of 19 IAV-positive clinical samples was carried out successfully with 100% coverage and 3,975-fold mean coverage for all segments. This easy-to-install and low-cost capacity-building protocol took only 24 h complete from extracting RNA to obtaining finished sequences. Overall, we developed a high-throughput portable sequencing workflow ideal for resource-limited clinical settings, aiding in real-time surveillance, outbreak investigation, and the detection of emerging viruses and genetic reassortment events. However, further evaluation is required to compare its accuracy with other high-throughput sequencing technologies to validate the widespread application of these findings, including WGS from environmental samples. IMPORTANCE The Nanopore MinION-based influenza sequencing approach we are proposing makes it possible to sequence the influenza A virus, irrespective of its diverse serotypes, directly from clinical and environmental swab samples, so that we are not limited to virus culture. This third-generation, portable, multiplexing, and real-time sequencing strategy is highly convenient for local sequencing, particularly in low- and middle-income countries like Bangladesh. Furthermore, the cost-efficient sequencing method could provide new opportunities to respond to the early phase of an influenza pandemic and enable the timely detection of the emerging subtypes in clinical samples. Here, we meticulously described the entire process that might help the researcher who will follow this methodology in the future. Our findings suggest that this proposed method is ideal for clinical and academic settings and will aid in real-time surveillance and in the detection of potential outbreak agents and newly evolved viruses.


Subject(s)
Influenza A virus , Influenza, Human , Nanopores , Humans , Influenza A virus/genetics , Influenza, Human/diagnosis , Workflow , Whole Genome Sequencing/methods
5.
Vet Res Commun ; 47(1): 29-38, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35380357

ABSTRACT

Rodents and shrews live in close proximity to humans and have been identified as important hosts of zoonotic pathogens. This study aimed to detect Group A rotavirus (RVA) and its potential risk factors in rodents and shrews in Bangladesh. We captured 417 small mammals from 10 districts with a high degree of contact between people and domestic animals and collected rectal swab samples between June 2011 and October 2013. We tested the swab samples for RVA RNA, targeting the NSP3 gene segment using real-time reverse transcription-polymerase chain reaction (rRT-PCR). Overall, RVA prevalence was the same (6.7%) in both rodents and shrews. We detected RVA RNA in 5.3% of Bandicota bengalensis (4/76; 95% CI: 1.4-12.9), 5.1% of B. indica (4/79; 95% CI: 1.4-12.4), 18.2% of Mus musculus (4/22; 95% CI: 5.2-40.3), 6.7% of Rattus rattus (6/90; 95% CI: 2.5-13.9), and 6.7% of Suncus murinus (10/150; 95% CI: 3.2-11.9). We found significantly more RVA in males (10.4%; OR: 3.4; P = 0.007), animals with a poor body condition score (13.9%; OR: 2.7; P = 0.05), during wet season (8.3%; OR: 4.1; P = 0.032), and in urban land gradients (10.04%; OR: 2.9; P = 0.056). These findings form a basis for understanding the prevalence of rotaviruses circulating among rodents and shrews in this region. We recommend additional molecular studies to ascertain the genotype and zoonotic potential of RVA circulating in rodents and shrews in Bangladesh.


Subject(s)
Rodentia , Rotavirus , Humans , Rats , Mice , Male , Animals , Rotavirus/genetics , Shrews , Bangladesh/epidemiology , RNA , Phylogeny
6.
Front Vet Sci ; 9: 1016970, 2022.
Article in English | MEDLINE | ID: mdl-36387379

ABSTRACT

The avian influenza virus (AIV) impacts poultry production, food security, livelihoods, and the risk of transmission to humans. Poultry, like pigeons and quail farming, is a growing sector in Bangladesh. However, the role of pigeons and quails in AIV transmission is not fully understood. Hence, we conducted this study to investigate the prevalence and risk factors of AIV subtypes in pigeons and quails at live bird markets (LBMs) in Bangladesh. We collected oropharyngeal and cloacal swab samples from 626 birds in 8 districts of Bangladesh from 2017 to 2021. We tested the swab samples for the matrix gene (M gene) followed by H5, H7, and H9 subtypes using real-time reverse transcriptase-polymerase chain reaction (rRT-PCR). We then used exploratory analysis to investigate the seasonal and temporal patterns of AIV and a mixed effect logistic model to identify the variable that influences the presence of AIV in pigeons and quails. The overall prevalence of AIV was 25.56%. We found that the prevalence of AIV in pigeons is 17.36%, and in quail is 38.75%. The prevalence of A/H5, A/H9, and A/H5/H9 in quail is 4.17, 17.92, and 1.67%, respectively. Furthermore, the prevalence of A/H5, A/H9, and A/H5/H9 in pigeons is 2.85, 2.59, and 0.26%. We also found that the prevalence of AIV was higher in the dry season than in the wet season in both pigeons and quail. In pigeons, the prevalence of A/untyped (40%) increased considerably in 2020. In quail, however, the prevalence of A/H9 (56%) significantly increased in 2020. The mixed-effect logistic regression model showed that the vendors having waterfowl (AOR: 2.13; 95% CI: 1.04-4.33), purchasing birds from the wholesale market (AOR: 2.96; 95% CI: 1.48-5.92) instead of farms, mixing sick birds with the healthy ones (AOR: 1.60; 95% CI: 1.04-2.45) and mingling unsold birds with new birds (AOR: 3.07; 95% CI: 2.01-4.70) were significantly more likely to be positive for AIV compared with vendors that did not have these characteristics. We also found that the odds of AIV were more than twice as high in quail (AOR: 2.57; 95% CI: 1.61-4.11) as in pigeons. Furthermore, the likelihood of AIV detection was 4.19 times higher in sick and dead birds (95% CI: 2.38-7.35) than in healthy birds. Our study revealed that proper hygienic practices at the vendors in LBM are not maintained. We recommend improving biosecurity practices at the vendor level in LBM to limit the risk of AIV infection in pigeons and quail in Bangladesh.

7.
Appl Microbiol Biotechnol ; 106(11): 4091-4114, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35612630

ABSTRACT

Novel coronavirus (SARS-CoV-2) leads to coronavirus disease 19 (COVID-19), declared as a pandemic that outbreaks within almost 225 countries worldwide. For the time being, numerous mutations have been reported that led to the generation of numerous variants spread more rapidly. This study aims to establish an efficient multi-epitope subunit vaccine that could elicit both T-cell and B-cell responses sufficient to recognize three confirmed surface proteins of the virus. The sequences of the viral surface proteins, e.g., an envelope protein (E), membrane glycoprotein (M), and S1 and S2 domain of spike surface glycoprotein (S), were analyzed by an immunoinformatic approach. Top immunogenic epitopes have been selected based on the assessment of the affinity with MHC class-I and MHC class-II, population coverage, along with conservancy among wild type and new variants of SARS-CoV-2 genomes. Molecular docking and molecular dynamic simulation suggest that the proposed top peptides have the potential to interact with the highest number of both the MHC class I and MHC class II. The epitopes were assembled by the appropriate linkers to form a multi-epitope vaccine. Epitopes used in the vaccine construct are conserved in all the variants evolved till now. This in silico-designed multi-epitope vaccine is highly immunogenic and induces levels of SARS-CoV2-neutralizing antibodies in mice, which is detected by inhibition of cytopathic effect in Vero cell monolayer. Further studies are required to improve its efficiency in the prevention of virus replication in lung tissue, in addition to safety validation as a step for human application to combat SARS-CoV-2 variants. KEY POINTS: • We discovered five T-cell epitopes from three surface proteins of SARS-CoV-2. • These are conserved in the wild-type virus and variants, e.g., beta, delta, and omicron. • The multi-epitope vaccine can induce IgG in mice that can neutralize the virus.


Subject(s)
COVID-19 , Viral Vaccines , Animals , COVID-19/prevention & control , COVID-19 Vaccines/genetics , Epitopes, B-Lymphocyte , Epitopes, T-Lymphocyte/genetics , Humans , Mice , Molecular Docking Simulation , RNA, Viral , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Vaccines, Subunit/genetics
9.
Sci Rep ; 12(1): 1438, 2022 01 26.
Article in English | MEDLINE | ID: mdl-35082344

ABSTRACT

The protection against emerging SARS-CoV-2 variants by pre-existing antibodies elicited due to the current vaccination or natural infection is a global concern. We aimed to investigate the rate of SARS-CoV-2 infection and its clinical features among infection-naïve, infected, vaccinated, and post-infection-vaccinated individuals. A cohort was designed among icddr,b staff registered for COVID-19 testing by real-time reverse transcriptase-polymerase chain reaction (rRT-PCR). Reinfection cases were confirmed by whole-genome sequencing. From 19 March 2020 to 31 March 2021, 1644 (mean age, 38.4 years and 57% male) participants were enrolled; where 1080 (65.7%) were tested negative and added to the negative cohort. The positive cohort included 750 positive patients (564 from baseline and 186 from negative cohort follow-up), of whom 27.6% were hospitalized and 2.5% died. Among hospitalized patients, 45.9% had severe to critical disease and 42.5% required oxygen support. Hypertension and diabetes mellitus were found significantly higher among the hospitalised patients compared to out-patients; risk ratio 1.3 and 1.6 respectively. The risk of infection among positive cohort was 80.2% lower than negative cohort (95% CI 72.6-85.7%; p < 0.001). Genome sequences showed that genetically distinct SARS-CoV-2 strains were responsible for reinfections. Naturally infected populations were less likely to be reinfected by SARS-CoV-2 than the infection-naïve and vaccinated individuals. Although, reinfected individuals did not suffer severe disease, a remarkable proportion of naturally infected or vaccinated individuals were (re)-infected by the emerging variants.


Subject(s)
COVID-19/pathology , Reinfection/epidemiology , Adult , COVID-19/complications , COVID-19/virology , Cohort Studies , Diabetes Complications/pathology , Female , Humans , Hypertension/complications , Male , Middle Aged , RNA, Viral/analysis , RNA, Viral/metabolism , Reinfection/diagnosis , Reinfection/virology , Risk , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Severity of Illness Index , Vaccination/statistics & numerical data
10.
Int J Infect Dis ; 114: 105-111, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34758392

ABSTRACT

OBJECTIVES: The democratization of diagnostics is one of the key challenges towards containing the transmission of coronavirus disease 2019 (COVID-19) around the globe. The operational complexities of existing PCR-based methods, including sample transfer to advanced central laboratories with expensive equipment, limit their use in resource-limited settings. However, with the advent of isothermal technologies, the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is possible at decentralized facilities. METHODS: In this study, two recombinase-based isothermal techniques, reverse transcription recombinase polymerase amplification (RT-RPA) and reverse transcription recombinase-aided amplification (RT-RAA), were evaluated for the detection of SARS-CoV-2 in clinical samples. A total of 76 real-time reverse transcription PCR (real-time RT-PCR) confirmed COVID-19 cases and 100 negative controls were evaluated to determine the diagnostic performance of the isothermal methods. RESULTS: This investigation revealed equally promising diagnostic accuracy of the two methods, with a sensitivity of 76.32% (95% confidence interval 65.18-85.32%) when the target genes were RdRP and ORF1ab for RT-RPA and RT-RAA, respectively; the combination of N and RdRP in RT-RPA augmented the accuracy of the assay at a sensitivity of 85.53% (95% confidence interval 75.58-92.55%). Furthermore, high specificity was observed for each of the methods, ranging from 94.00% to 98.00% (95% confidence interval 87.40-9.76%). CONCLUSIONS: Considering the diagnostic accuracies, both RT-RPA and RT-RAA appear to be suitable assays for point-of-need deployment for the detection of the pathogen, understanding its epidemiology, case management, and curbing transmission.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Nucleic Acid Amplification Techniques , RNA, Viral/genetics , Recombinases/metabolism , Reverse Transcription , Sensitivity and Specificity
11.
Microbiol Spectr ; 9(3): e0046821, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34730436

ABSTRACT

Coronavirus disease 19 (COVID-19)-caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-has spread rapidly around the world. The global shortage of equipment and health care professionals, diagnostic cost, and difficulty in collecting nasopharyngeal swabs (NPSs) necessitate the use of an alternative specimen type for SARS-CoV-2 diagnosis. In this study, we investigated the use of saliva as an alternative specimen type for SARS-CoV-2 detection. Participants presenting COVID-19 symptoms and their contacts were enrolled at the COVID-19 Screening Unit of Dhaka Hospital of the International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), from July to November 2020. Paired NPS and saliva specimens were collected from each participant. Reverse transcription-quantitative PCR (RT-qPCR) was performed to detect SARS-CoV-2. Of the 596 suspected COVID-19-positive participants, 231 (38.7%) were detected as COVID-19 positive by RT-qPCR from at least 1 specimen type. Among the positive cases, 184 (79.6%) patients were identified to be positive for SARS-CoV-2 based on NPS and saliva samples, whereas 45 (19.65%) patients were positive for SARS-CoV-2 based on NPS samples but negative for SARS-CoV-2 based on the saliva samples. Two (0.5%) patients were positive for SARS-CoV-2 based on saliva samples but negative for SARS-CoV-2 based on NPS samples. The sensitivity and specificity of the saliva samples were 80.3% and 99.4%, respectively. SARS-CoV-2 detection was higher in saliva (85.1%) among the patients who visited the clinic after 1 to 5 days of symptom onset. A lower median cycle threshold (CT) value indicated a higher SARS-CoV-2 viral load in NPS than that in saliva for target genes among the positive specimens. The study findings suggest that saliva can be used accurately for diagnosis of SARS-CoV-2 early after symptom onset in clinical and community settings. IMPORTANCE As the COVID-19 pandemic erupted, the WHO recommended the use of nasopharyngeal or throat swabs for the detection of SARS-CoV-2 etiology of COVID-19. The collection of NPS causes discomfort because of its invasive collection procedure. There are considerable risks to health care workers during the collection of these specimens. Therefore, an alternative, noninvasive, reliable, and self-collected specimen was explored in this study. This study investigated the feasibility and suitability of saliva versus NPS for the detection of SARS-CoV-2. Here, we showed that the sensitivity of saliva specimens was 80.35%, which meets the WHO criteria. Saliva is an easy-to-get, convenient, and low-cost specimen that yields better results if it is collected within the first 5 days of symptom onset. Our study findings suggest that saliva can be used in low-resource countries, community settings, and vulnerable groups, such as children and elderly people.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Nasopharynx/virology , SARS-CoV-2/isolation & purification , Saliva/virology , Specimen Handling/methods , Adult , Bangladesh , Diagnostic Tests, Routine , Humans , Male , Mass Screening , Middle Aged , Pandemics , Real-Time Polymerase Chain Reaction , Sensitivity and Specificity
12.
Microbiol Resour Announc ; 10(42): e0091221, 2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34672705

ABSTRACT

We announce the complete genome sequences of 12 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sublineage B.1.617.2 strains (Delta variant) obtained from nasopharyngeal and oropharyngeal swab samples from 12 pediatric patients in Chittagong, Bangladesh, displaying COVID-19 symptoms. Oxford Nanopore MinION sequencing technology was used to generate the genomic sequences.

13.
J Infect Dis ; 224(12 Suppl 2): S864-S872, 2021 12 20.
Article in English | MEDLINE | ID: mdl-34586390

ABSTRACT

BACKGROUND: Since August 2017, Myanmar nationals from Rakhine state have crossed the border into Bangladesh and settled in Cox's Bazar, the World's largest refugee camp. Due to overcrowding, poor sanitation, and hygienic practices they have been under significant health risks including diarrheal diseases. The objective of this study is to determine the viral etiology of acute gastroenteritis (AGE) among forcibly displaced Myanmar nationals (FDMN) and adjacent Bangladeshi local host population (AHP). METHODS: From April 2018 to April 2019, we collected stool specimens from 764 FDMN and 1159 AHP of all ages. We tested 100 randomly selected specimens from each group for the most common AGE viruses. RESULTS: Among 200 diarrhea patients, 55% and 64% of FDMN and AHP patients, respectively, had viral infections; the most common viruses were rotavirus (29% vs 44%), adenovirus (24% vs 31%), and norovirus (14% vs 10%). In both populations, viral infections were significantly higher in children less than 5 years of age, compared with bacterial infections that were higher in patients older than 5 years of age (P ≤ .05). CONCLUSIONS: Disparities in viral and bacterial prevalence among various age groups warrant careful antibiotic usage, especially in children less than 5 years of age.


Subject(s)
Diarrhea/epidemiology , Feces/virology , Gastroenteritis/diagnosis , Gastroenteritis/virology , Refugees , Adenoviridae , Adolescent , Bangladesh/epidemiology , Child , Child, Preschool , Female , Gastroenteritis/ethnology , Humans , Infant , Male , Myanmar/ethnology , Norovirus , Prevalence , Reverse Transcriptase Polymerase Chain Reaction , Rotavirus
15.
Viruses ; 14(1)2021 12 30.
Article in English | MEDLINE | ID: mdl-35062271

ABSTRACT

Canine coronavirus (CCoV) is widespread among the dog population and causes gastrointestinal disorders, and even fatal cases. As the zoonotic transmission of viruses from animals to humans has become a worldwide concern nowadays, it is necessary to screen free-roaming dogs for their common pathogens due to their frequent interaction with humans. We conducted a cross-sectional study to detect and characterize the known and novel Corona, Filo, Flavi, and Paramyxoviruses in free-roaming dogs in Bangladesh. Between 2009-10 and 2016-17, we collected swab samples from 69 dogs from four districts of Bangladesh, tested using RT-PCR and sequenced. None of the samples were positive for Filo, Flavi, and Paramyxoviruses. Only three samples (4.3%; 95% CI: 0.9-12.2) tested positive for Canine Coronavirus (CCoV). The CCoV strains identified were branched with strains of genotype CCoV-II with distinct distances. They are closely related to CCoVs from the UK, China, and other CoVs isolated from different species, which suggests genetic recombination and interspecies transmission of CCoVs. These findings indicate that CCoV is circulating in dogs of Bangladesh. Hence, we recommend future studies on epidemiology and genetic characterization with full-genome sequencing of emerging coronaviruses in companion animals in Bangladesh.


Subject(s)
Coronavirus Infections/veterinary , Coronavirus, Canine/genetics , Coronavirus, Canine/isolation & purification , Dog Diseases/epidemiology , Animals , Bangladesh/epidemiology , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Coronavirus, Canine/classification , Cross-Sectional Studies , Dog Diseases/virology , Dogs , Female , Genotype , Male , Phylogeny , Viral Proteins/genetics
16.
3 Biotech ; 10(12): 546, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33251084

ABSTRACT

The highly pathogenic avian H5N1 influenza viruses have been recognized as a potential pandemic threat to humans, and to the poultry industry since 1997. H5 viruses consist of a high mutation rate, so universal vaccine designing is very challenging. Here, we describe a vaccinomics approach to design a novel multi-epitope influenza vaccine, based on the highly conserved regions of surface glycoprotein, Hemagglutinin (HA). Initially, the HA protein sequences from Bangladeshi origin were retrieved and aligned by ClustalW. The sequences of 100% conserved regions extracted and analyzed to select the highest potential T-cell and B-cell epitope. The HTL and CTL analyses using IEDB tools showed that DVWTYNAELLVLMEN possesses the highest affinity with MHC class I and II alleles, and it has the highest population coverage. The docking simulation study suggests that this epitope has the potential to interact with both MHC class I and MHC class II. The B-cell epitope prediction provides a potential peptide, GAIAGFIEGGWQGM. We further retrieved HA sequences of 3950 avian and 250 human H5 isolates from several populations of the world, where H5 was an epidemic. Surprisingly, these epitopes are more than 98% conserved in those regions which indicate their potentiality as a conserved vaccine. We have proposed a multi-epitope vaccine using these sequences and assess its stability and potentiality to induce B-cell immunity. In vivo study is necessary to corroborate this epitope as a vaccine, however, setting forth groundwork for wet-lab studies essential to mitigate pandemic threats and provide cross-protection of both avian and humans against H5 influenza viruses.

17.
Ecohealth ; 17(3): 398-405, 2020 09.
Article in English | MEDLINE | ID: mdl-32876756

ABSTRACT

Rotavirus A (RVA) is the primary cause of acute dehydrating diarrhea in human and numerous animal species. Animal-to-human interspecies transmission is one of the evolutionary mechanisms driving rotavirus strain diversity in humans. We screened fresh feces from 416 bats (201 Pteropus medius, 165 Rousettus leschenaultii and 50 Taphozous melanopogon) for RVA using rRT-PCR. We detected a prevalence of 7% (95% CI 3.5-10.8) and 2% (95% CI 0.4-5.2) in P. medius and R. leschenaultii, respectively. We did not detect RVA in the insectivorous bat (T. melanopogon). We identified RVA strains similar to the human strains of G1 and G8 based on sequence-based genotyping, which underscores the importance of including wildlife species in surveillance for zoonotic pathogens to understand pathogen transmission and evolution better.


Subject(s)
Chiroptera/virology , Rotavirus Infections/epidemiology , Rotavirus/isolation & purification , Animals , Bangladesh , Feces/virology , Molecular Diagnostic Techniques , Population Surveillance
18.
Transbound Emerg Dis ; 67(2): 956-966, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31765042

ABSTRACT

Group A rotavirus (RVA) is an important cause of diarrhoea in people, especially children, and animals globally. Due to the segmented nature of the RVA genome, animal RVA strains have the potential to adapt to the human host through reassortment with other co-infecting human viruses. Macaques share food and habitat with people, resulting in close interaction between these two species. This study aimed to detect and characterize RVA in rhesus macaques (Macaca mulatta) in Bangladesh. Faecal samples (N = 454) were collected from apparently healthy rhesus macaques from nine different sites in Bangladesh between February and March 2013. The samples were tested by one-step, real-time, reverse transcriptase-polymerase chain reaction (PCR). Four percent of samples (n = 20; 95% CI 2.7%-6.7%) were positive for RVA. RVA positive samples were further characterized by nucleotide sequence analysis of two structural protein gene fragments, VP4 (P genotype) and VP7 (G genotype). G3, G10, P[3] and P[15] genotypes were identified and were associated as G3P[3], G3P[15] and G10P[15]. The phylogenetic relationship between macaque RVA strains from this study and previously reported human strains indicates possible transmission between humans and macaques in Bangladesh. To our knowledge, this is the first report of detection and characterization of rotaviruses in rhesus macaques in Bangladesh. These data will not only aid in identifying viral sharing between macaques, human and other animals, but will also improve the development of mitigation measures for the prevention of future rotavirus outbreaks.


Subject(s)
Diarrhea/virology , Macaca mulatta/virology , Rotavirus Infections/veterinary , Rotavirus/genetics , Animals , Animals, Wild , Bangladesh/epidemiology , Feces/virology , Female , Genotype , Geography , Humans , Male , Phylogeny , Rotavirus/isolation & purification , Rotavirus Infections/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...