Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Res Int ; 2022: 6392206, 2022.
Article in English | MEDLINE | ID: mdl-35993044

ABSTRACT

Breast cancer is the most prevalent form of cancer that can strike at any age; the higher the age, the greater the risk. The presence of malignant tissue has become more frequent in women. Although medical therapy has improved breast cancer diagnostic and treatment methods, still the death rate remains high due to failure of diagnosing breast cancer in its early stages. A classification approach for mammography images based on nonsubsampled contourlet transform (NSCT) is proposed in order to investigate it. The proposed method uses multiresolution NSCT decomposition to the region of interest (ROI) of mammography images and then uses Z-moments for extracting features from the NSCT-decomposed images. The matrix is formed by the components that are extracted from the region of interest and are then subjected to singular value decomposition (SVD) in order to remove the essential features that can generalize globally. The method employs a support vector machine (SVM) classification algorithm to categorize mammography pictures into normal, benign, and malignant and to identify and classify the breast lesions. The accuracy of the proposed model is 96.76 percent, and the training time is greatly decreased, as evident from the experiments performed. The paper also focuses on conducting the feature extraction experiments using morphological spectroscopy. The experiment combines 16 different algorithms with 4 classification methods for achieving exceptional accuracy and time efficiency outcomes as compared to other existing state-of-the-art approaches.


Subject(s)
Breast Neoplasms , Algorithms , Breast , Breast Neoplasms/diagnostic imaging , Female , Humans , Mammography/methods , Support Vector Machine
2.
Biomed Res Int ; 2022: 1012684, 2022.
Article in English | MEDLINE | ID: mdl-35832854

ABSTRACT

Microsatellites are small, repetitive sequences found all across the human genome. Microsatellite instability is the phenomenon of variations in the length of microsatellites induced by the insertion or deletion of repeat units in tumor tissue (MSI). MSI-type stomach malignancy has distinct genetic phenotypes and clinic pathological characteristics, and the stability of microsatellites influences whether or not patients with gastric mesothelioma react to immunotherapy. As a result, determining MSI status prior to surgery is critical for developing treatment options for individuals with gastric cancer. Traditional MSI detection approaches need immunological histochemistry and genetic analysis, which adds to the expense and makes it difficult to apply to every patient in clinical practice. In this study, to predict the MSI status of gastric cancer patients, researchers used image feature extraction technology and a machine learning algorithm to evaluate high-resolution histopathology pictures of patients. 279 cases of raw data were obtained from the TCGA database, 442 samples were obtained after preprocessing and upsampling, and 445 quantitative image features, including first-order statistics of impressions, texture features, and wavelet features, were extracted from the histopathological images of each sample. To filter the characteristics and provide a prediction label (risk score) for MSI status of gastric cancer, Lasso regression was utilized. The predictive label's classification performance was evaluated using a logistic classification model, which was then coupled with the clinical data of each patient to create a customized nomogram for MSI status prediction using multivariate analysis.


Subject(s)
Mesothelioma, Malignant , Stomach Neoplasms , Humans , Microsatellite Instability , Microsatellite Repeats , Stomach Neoplasms/diagnosis , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology
3.
Biomed Res Int ; 2022: 2273648, 2022.
Article in English | MEDLINE | ID: mdl-35502337

ABSTRACT

Protein is the material foundation of living things, and it directly takes part in and runs the process of living things itself. Predicting protein complexes helps us understand the structure and function of complexes, and it is an important foundation for studying how cells work. Genome-wide protein interaction (PPI) data is growing as high-throughput experiments become more common. The aim of this research is that it provides a dual-tree complex wavelet transform which is used to find out about the structure of proteins. It also identifies the secondary structure of protein network. Many computer-based methods for predicting protein complexes have also been developed in the field. Identifying the secondary structure of a protein is very important when you are studying protein characteristics and properties. This is how the protein sequence is added to the distance matrix. The scope of this research is that it can confidently predict certain protein complexes rapidly, which compensates for shortcomings in biological research. The three-dimensional coordinates of C atom are used to do this. According to the texture information in the distance matrix, the matrix is broken down into four levels by the double-tree complex wavelet transform because it has four levels. The subband energy and standard deviation in different directions are taken, and then, the two-dimensional feature vector is used to show the secondary structure features of the protein in a way that is easy to understand. Then, the KNN and SVM classifiers are used to classify the features that were found. Experiments show that a new feature called a dual-tree complex wavelet can improve the texture granularity and directionality of the traditional feature extraction method, which is called secondary structure.


Subject(s)
Computational Biology , Support Vector Machine , Protein Structure, Secondary , Proteins/chemistry , Wavelet Analysis
4.
Biomed Res Int ; 2022: 5765629, 2022.
Article in English | MEDLINE | ID: mdl-35345527

ABSTRACT

Biomedical researchers and biologists often search a large amount of literature to find the relationship between biological entities, such as drug-drug and compound-protein. With the proliferation of medical literature and the development of deep learning, the automatic extraction of biological entity interaction relationships from literature has shown great potential. The fundamental scope of this research is that the approach described in this research uses technologies like dynamic word vectors and multichannel convolution to learn a larger variety of relational expression semantics, allowing it to detect more entity connections. The extraction of biological entity relationships is the foundation for achieving intelligent medical care, which may increase the effectiveness of intelligent medical question answering and enhance the development of precision healthcare. In the past, deep learning methods have achieved specific results, but there are the following problems: the model uses static word vectors, which cannot distinguish polysemy; the weight of words is not considered, and the extraction effect of long sentences is poor; the integration of various models can improve the sample imbalance problem, the model is more complex. The purpose of this work is to create a global approach for eliminating different physical entity links, such that the model can effectively extract the interpretation of the expression relationship without having to develop characteristics manually. To this end, a deep multichannel CNN model (MC-CNN) based on the residual structure is proposed, generating dynamic word vectors through BERT (Bidirectional Encoder Representation from Transformers) to improve the accuracy of lexical semantic representation and uses multihead attention to capture the dependencies of long sentences and by designing the Ranking loss function to replace the multimodel ensemble to reduce the impact of sample imbalance. Tested on multiple datasets, the results show that the proposed method has good performance.


Subject(s)
Proteins , Semantics
SELECTION OF CITATIONS
SEARCH DETAIL
...