Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Cardiovasc Res ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38794925

ABSTRACT

AIMS: The mechanisms regulating the cellular behavior and cardiomyocyte organization during ventricular wall morphogenesis are poorly understood. Cardiomyocytes are surrounded by extracellular matrix (ECM) and interact with ECM via integrins. This study aims to determine whether and how ß1 integrins regulate cardiomyocyte behavior and organization during ventricular wall morphogenesis in the mouse. METHODS AND RESULTS: We applied mRNA deep sequencing and immunostaining to determine the expression repertoires of α/ß integrins and their ligands in the embryonic heart. Integrin ß1 subunit (ß1) and some of its ECM ligands are asymmetrically distributed and enriched in the luminal side of cardiomyocytes, and fibronectin surrounds cardiomyocytes, creating a network for them. Itgb1, which encodes the ß1, was deleted via Nkx2.5Cre/+ to generate myocardial-specific Itgb1 knockout (B1KO) mice. B1KO hearts display an absence of a trabecular zone but a thicker compact zone. The levels of hyaluronic acid and versican, essential for trabecular initiation, were not significantly different between control and B1KO. Instead, fibronectin, a ligand of ß1, was absent in the myocardium of B1KO hearts. Furthermore, B1KO cardiomyocytes display a random cellular orientation and fail to undergo perpendicular cell division, be organized properly, and establish the proper tissue architecture to form trabeculae. Mosaic clonal lineage tracing showed that Itgb1 regulates cardiomyocyte transmural migration and proliferation autonomously. CONCLUSIONS: ß1 is asymmetrically localized in the cardiomyocytes, and some of its ECM ligands are enriched along the luminal side of the myocardium, and fibronectin surrounds cardiomyocytes. ß1 integrins are required for cardiomyocytes to attach to the ECM network. This engagement provides structural support for cardiomyocytes to maintain shape, undergo perpendicular division, and establish cellular organization. Deletion of Itgb1 leads to loss of ß1 and fibronectin and prevents cardiomyocytes from engaging the ECM network, resulting in failure to establish tissue architecture to form trabeculae.

2.
bioRxiv ; 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37693495

ABSTRACT

Aims: The mechanisms regulating the cellular behavior and cardiomyocyte organization during ventricular wall morphogenesis are poorly understood. Cardiomyocytes are surrounded by extracellular matrix (ECM) and interact with ECM via integrins. This study aims to determine whether and how ß1 integrins regulate cardiomyocyte behavior and organization during ventricular wall morphogenesis in the mouse. Methods and Results: We applied mRNA deep sequencing and immunostaining to determine the expression repertoires of α/ß integrins and their ligands in the embryonic heart. Integrin ß1 subunit (ß1) and some of its ECM ligands are asymmetrically distributed and enriched in the luminal side of cardiomyocytes, while fibronectin surrounds cardiomyocytes, creating a network for them. Itgb1 , which encodes the ß1 integrin subunit, was deleted via Nkx2.5 Cre/+ to generate myocardial-specific Itgb1 knockout (B1KO) mice. B1KO hearts display an absence of trabecular zone but a thicker compact zone. The abundances of hyaluronic acid and versican are not significantly different. Instead, fibronectin, a ligand of ß1, was absent in B1KO. We examined cellular behaviors and organization via various tools. B1KO cardiomyocytes display a random cellular orientation and fail to undergo perpendicular cell division, be organized properly, and establish the proper tissue architecture to form trabeculae. The reduction of Notch1 activation was not the cause of the abnormal cellular organization in B1KO hearts. Mosaic clonal lineage tracing shows that Itgb1 regulates cardiomyocyte transmural migration and proliferation autonomously. Conclusions: ß1 is asymmetrically localized in the cardiomyocytes, and its ECM ligands are enriched in the luminal side of the myocardium and surrounding cardiomyocytes. ß1 integrins are required for cardiomyocytes to attach to the ECM network. This engagement provides structural support for cardiomyocytes to maintain shape, undergo perpendicular division, and establish cellular organization. Deletion of Itgb1 , leading to ablation of ß1 integrins, causes the dissociation of cardiomyocytes from the ECM network and failure to establish tissue architecture to form trabeculae.

3.
J Cardiovasc Dev Dis ; 9(2)2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35200702

ABSTRACT

Left ventricular noncompaction (LVNC) is a type of cardiomyopathy characterized anatomically by prominent ventricular trabeculation and deep intertrabecular recesses. The mortality associated with LVNC ranges from 5% to 47%. The etiology of LVNC is yet to be fully understood, although decades have passed since its recognition as a clinical entity globally. Furthermore, critical questions, i.e., whether LVNC represents an acquired pathology or has a congenital origin and whether the reduced contractile function in LVNC patients is a cause or consequence of noncompaction, remain to be addressed. In this study, to answer some of these questions, we analyzed the clinical features of LVNC patients. Out of 9582 subjects screened for abnormal cardiac functions, 45 exhibit the characteristics of LVNC, and 1 presents right ventricular noncompaction (RVNC). We found that 40 patients show valvular regurgitation, 39 manifest reduced systolic contractions, and 46 out of the 46 present different forms of arrhythmias that are not restricted to be caused by the noncompact myocardium. This retrospective examination of LVNC patients reveals some novel findings: LVNC is associated with regurgitation in most patients and arrhythmias in all patients. The thickness ratio of the trabecular layer to compact layer negatively correlates with fractional shortening, and reduced contractility might result from LVNC. This study adds evidence to support a congenital origin of LVNC that might benefit the diagnosis and subsequent characterization of LVNC patients.

4.
Cells ; 10(9)2021 08 25.
Article in English | MEDLINE | ID: mdl-34571841

ABSTRACT

Numb family proteins (NFPs), including Numb and Numblike (Numbl), are commonly known for their role as cell fate determinants for multiple types of progenitor cells, mainly due to their function as Notch inhibitors. Previous studies have shown that myocardial NFP double knockout (MDKO) hearts display an up-regulated Notch activation and various defects in cardiac progenitor cell differentiation and cardiac morphogenesis. Whether enhanced Notch activation causes these defects in MDKO is not fully clear. To answer the question, we examined the spatiotemporal patterns of Notch1 expression, Notch activation, and Numb expression in the murine embryonic hearts using multiple approaches including RNAScope, and Numb and Notch reporter mouse lines. To further interrogate the interaction between NFPs and Notch signaling activation, we deleted both Notch1 or RBPJk alleles in the MDKO. We examined and compared the phenotypes of Notch1 knockout, NFPs double knockout, Notch1; Numb; Numbl and RBPJk; Numb; Numbl triple knockouts. Our study showed that Notch1 is expressed and activated in the myocardium at several stages, and Numb is enriched in the epicardium and did not show the asymmetric distribution in the myocardium. Cardiac-specific Notch1 deletion causes multiple structural defects and embryonic lethality. Notch1 or RBPJk deletion in MDKO did not rescue the structural defects in the MDKO but partially rescued the defects of cardiac progenitor cell differentiation, cardiomyocyte proliferation, and trabecular morphogenesis. Our study concludes that NFPs regulate progenitor cell differentiation, cardiomyocyte proliferation, and trabecular morphogenesis partially through Notch1 and play more roles than inhibiting Notch1 signaling during cardiac morphogenesis.


Subject(s)
Heart/physiology , Membrane Proteins/metabolism , Morphogenesis/physiology , Myocardium/metabolism , Nerve Tissue Proteins/metabolism , Receptor, Notch1/metabolism , Animals , Cell Differentiation/physiology , Female , Male , Mice , Organogenesis/physiology , Signal Transduction/physiology , Stem Cells/metabolism
5.
Proc Natl Acad Sci U S A ; 116(31): 15560-15569, 2019 07 30.
Article in English | MEDLINE | ID: mdl-31300538

ABSTRACT

The roles of cellular orientation during trabecular and ventricular wall morphogenesis are unknown, and so are the underlying mechanisms that regulate cellular orientation. Myocardial-specific Numb and Numblike double-knockout (MDKO) hearts display a variety of defects, including in cellular orientation, patterns of mitotic spindle orientation, trabeculation, and ventricular compaction. Furthermore, Numb- and Numblike-null cardiomyocytes exhibit cellular behaviors distinct from those of control cells during trabecular morphogenesis based on single-cell lineage tracing. We investigated how Numb regulates cellular orientation and behaviors and determined that N-cadherin levels and membrane localization are reduced in MDKO hearts. To determine how Numb regulates N-cadherin membrane localization, we generated an mCherry:Numb knockin line and found that Numb localized to diverse endocytic organelles but mainly to the recycling endosome. Consistent with this localization, cardiomyocytes in MDKO did not display defects in N-cadherin internalization but rather in postendocytic recycling to the plasma membrane. Furthermore, N-cadherin overexpression via a mosaic model partially rescued the defects in cellular orientation and trabeculation of MDKO hearts. Our study unravels a phenomenon that cardiomyocytes display spatiotemporal cellular orientation during ventricular wall morphogenesis, and its disruption leads to abnormal trabecular and ventricular wall morphogenesis. Furthermore, we established a mechanism by which Numb modulates cellular orientation and consequently trabecular and ventricular wall morphogenesis by regulating N-cadherin recycling to the plasma membrane.


Subject(s)
Cadherins/metabolism , Heart Ventricles/embryology , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Myocytes, Cardiac/metabolism , Nerve Tissue Proteins/metabolism , Organogenesis , Animals , Cadherins/genetics , Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins/genetics , Mice , Mice, Knockout , Myocytes, Cardiac/cytology , Nerve Tissue Proteins/genetics
6.
Sci Rep ; 8(1): 2678, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29422515

ABSTRACT

Hey2 gene mutations in both humans and mice have been associated with multiple cardiac defects. However, the currently reported localization of Hey2 in the ventricular compact zone cannot explain the wide variety of cardiac defects. Furthermore, it was reported that, in contrast to other organs, Notch doesn't regulate Hey2 in the heart. To determine the expression pattern and the regulation of Hey2, we used novel methods including RNAscope and a Hey2 CreERT2 knockin line to precisely determine the spatiotemporal expression pattern and level of Hey2 during cardiac development. We found that Hey2 is expressed in the endocardial cells of the atrioventricular canal and the outflow tract, as well as at the base of trabeculae, in addition to the reported expression in the ventricular compact myocardium. By disrupting several signaling pathways that regulate trabeculation and/or compaction, we found that, in contrast to previous reports, Notch signaling and Nrg1/ErbB2 regulate Hey2 expression level in myocardium and/or endocardium, but not its expression pattern: weak expression in trabecular myocardium and strong expression in compact myocardium. Instead, we found that FGF signaling regulates the expression pattern of Hey2 in the early myocardium, and regulates the expression level of Hey2 in a Notch1 dependent manner.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/biosynthesis , Myocardium/metabolism , Receptors, Notch/metabolism , Repressor Proteins/biosynthesis , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Endocardium/metabolism , Endothelial Cells/metabolism , Female , Gene Knock-In Techniques , Heart/growth & development , Heart Defects, Congenital/genetics , Heart Ventricles/metabolism , Male , Mice , Mice, Knockout , Morphogenesis , Pregnancy , Receptor, Notch1/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Signal Transduction , Spatio-Temporal Analysis
7.
J Cell Mol Med ; 22(1): 101-110, 2018 01.
Article in English | MEDLINE | ID: mdl-28816006

ABSTRACT

It has been recently reported that CD38 was highly expressed in adipose tissues from obese people and CD38-deficient mice were resistant to high-fat diet (HFD)-induced obesity. However, the role of CD38 in the regulation of adipogenesis and lipogenesis is unknown. In this study, to explore the roles of CD38 in adipogenesis and lipogenesis in vivo and in vitro, obesity models were generated with male CD38-/- and WT mice fed with HFD. The adipocyte differentiations were induced with MEFs from WT and CD38-/- mice, 3T3-L1 and C3H10T1/2 cells in vitro. The lipid accumulations and the alternations of CD38 and the genes involved in adipogenesis and lipogenesis were determined with the adipose tissues from the HFD-fed mice or the MEFs, 3T3-L1 and C3H10T1/2 cells during induction of adipocyte differentiation. The results showed that CD38-/- male mice were significantly resistant to HFD-induced obesity. CD38 expressions in adipocytes were significantly increased in WT mice fed with HFD, and the similar results were obtained from WT MEFs, 3T3-L1 and C3H10T1/2 during induction of adipocyte differentiation. The expressions of PPARγ, AP2 and C/EBPα were markedly attenuated in adipocytes from HFD-fed CD38-/- mice and CD38-/- MEFs at late stage of adipocyte differentiation. Moreover, the expressions of SREBP1 and FASN were also significantly decreased in CD38-/- MEFs. Finally, the CD38 deficiency-mediated activations of Sirt1 signalling were up-regulated or down-regulated by resveratrol and nicotinamide, respectively. These results suggest that CD38 deficiency impairs adipogenesis and lipogenesis through activating Sirt1/PPARγ-FASN signalling pathway during the development of obesity.


Subject(s)
ADP-ribosyl Cyclase 1/deficiency , Adipogenesis , Adipose Tissue/metabolism , Lipogenesis , PPAR gamma/metabolism , Signal Transduction , Sirtuin 1/metabolism , ADP-ribosyl Cyclase 1/metabolism , Adipocytes/metabolism , Animals , Cell Differentiation , Embryo, Mammalian/cytology , Fibroblasts/metabolism , Mice , NAD/metabolism
8.
Development ; 144(9): 1635-1647, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28465335

ABSTRACT

The epicardium contributes to multiple cardiac lineages and is essential for cardiac development and regeneration. However, the mechanism of epicardium formation is unclear. This study aimed to establish the cellular and molecular mechanisms underlying the dissociation of pro-epicardial cells (PECs) from the pro-epicardium (PE) and their subsequent translocation to the heart to form the epicardium. We used lineage tracing, conditional deletion, mosaic analysis and ligand stimulation in mice to determine that both villous protrusions and floating cysts contribute to PEC translocation to myocardium in a CDC42-dependent manner. We resolved a controversy by demonstrating that physical contact of the PE with the myocardium constitutes a third mechanism for PEC translocation to myocardium, and observed a fourth mechanism in which PECs migrate along the surface of the inflow tract to reach the ventricles. Epicardial-specific Cdc42 deletion disrupted epicardium formation, and Cdc42 null PECs proliferated less, lost polarity and failed to form villous protrusions and floating cysts. FGF signaling promotes epicardium formation in vivo, and biochemical studies demonstrated that CDC42 is involved in the trafficking of FGF receptors to the cell membrane to regulate epicardium formation.


Subject(s)
Cell Membrane/metabolism , Pericardium/cytology , Pericardium/metabolism , Receptors, Fibroblast Growth Factor/metabolism , cdc42 GTP-Binding Protein/metabolism , Animals , Cell Polarity , Cell Proliferation , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Fibroblast Growth Factor 2/metabolism , Intracellular Space/metabolism , Mice, Knockout , Models, Biological , Myocardium/cytology , Myocardium/metabolism , Phosphorylation , Protein Transport , Proto-Oncogene Proteins c-akt/metabolism
9.
J Vis Exp ; (116)2016 10 07.
Article in English | MEDLINE | ID: mdl-27768060

ABSTRACT

Single clonal tracing and analysis at the whole-heart level can determine cardiac progenitor cell behavior and differentiation during cardiac development, and allow for the study of the cellular and molecular basis of normal and abnormal cardiac morphogenesis. Recent emerging technologies of retrospective single clonal analyses make the study of cardiac morphogenesis at single cell resolution feasible. However, tissue opacity and light scattering of the heart as imaging depth is increased hinder whole-heart imaging at single cell resolution. To overcome these obstacles, a whole-embryo clearing system that can render the heart highly transparent for both illumination and detection must be developed. Fortunately, in the last several years, many methodologies for whole-organism clearing systems such as CLARITY, Scale, SeeDB, ClearT, 3DISCO, CUBIC, DBE, BABB and PACT have been reported. This lab is interested in the cellular and molecular mechanisms of cardiac morphogenesis. Recently, we established single cell lineage tracing via the ROSA26-CreERT2; ROSA26-Confetti system to sparsely label cells during cardiac development. We adapted several whole embryo-clearing methodologies including Scale and CUBIC (clear, unobstructed brain imaging cocktails and computational analysis) to clear the embryo in combination with whole mount staining to image single clones inside the heart. The heart was successfully imaged at single cell resolution. We found that Scale can clear the embryonic heart, but cannot effectively clear the postnatal heart, while CUBIC can clear the postnatal heart, but damages the embryonic heart by dissolving the tissue. The methods described here will permit the study of gene function at a single clone resolution during cardiac morphogenesis, which, in turn, can reveal the cellular and molecular basis of congenital heart defects.


Subject(s)
Cell Lineage , Embryo, Mammalian , Heart , Brain , Cell Differentiation , Gene Expression , Imaging, Three-Dimensional/methods
10.
Cell Rep ; 15(1): 158-170, 2016 Apr 05.
Article in English | MEDLINE | ID: mdl-27052172

ABSTRACT

The cardiac trabeculae are sheet-like structures extending from the myocardium that function to increase surface area. A lack of trabeculation causes embryonic lethality due to compromised cardiac function. To understand the cellular and molecular mechanisms of trabecular formation, we genetically labeled individual cardiomyocytes prior to trabeculation via the brainbow multicolor system and traced and analyzed the labeled cells during trabeculation by whole-embryo clearing and imaging. The clones derived from labeled single cells displayed four different geometric patterns that are derived from different patterns of oriented cell division (OCD) and migration. Of the four types of clones, the inner, transmural, and mixed clones contributed to trabecular cardiomyocytes. Further studies showed that perpendicular OCD is an extrinsic asymmetric cell division that putatively contributes to trabecular regional specification. Furthermore, N-Cadherin deletion in labeled clones disrupted the clonal patterns. In summary, our data demonstrate that OCD contributes to trabecular morphogenesis and specification.


Subject(s)
Asymmetric Cell Division , Cell Lineage , Heart/embryology , Morphogenesis , Myocytes, Cardiac/cytology , Animals , Cadherins/genetics , Cadherins/metabolism , Cell Line , Cell Movement , Female , Male , Mice , Myocytes, Cardiac/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...