Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
J Colloid Interface Sci ; 670: 687-697, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38788436

ABSTRACT

Electrocatalytic nitrogen reduction reaction (NRR) is one of the most promising approaches to achieving green and efficient NH3 production. However, the designs of efficient NRR catalysts with high activity and selectivity still are severely hampered by inherent linear scaling relations among the adsorption energies of NRR intermediates. Herein, the properties of ten M3B4 type MBenes have been initially investigated for efficient N2 activation and reduction to NH3via first-principles calculations. We highlight that Cr3B4 MBene possesses remarkable NRR activity with a record-low limiting potential (-0.13 V). Then, this work proposes descriptor-based design principles that can effectively evaluate the catalytic activity of MBenes, which have been further employed to design bimetallic M2M'B4 MBenes. As a result, 5 promising candidates including Ti2YB4, V2YB4, V2MoB4, Nb2YB4, and Nb2CrB4 with excellent NRR performance have been extracted from 20 bimetallic MBenes. Further analysis illuminates that constructing bimetallic MBenes can selectively tune the adsorption strength of NHNH2** and NH2NH2**, and break the linear scaling relations between their adsorption energies, rendering them ideal for NRR. This work not only pioneers the application of MBenes as efficient NRR catalysts but also proposes rational design principles for boosting their catalytic performance.

2.
Nanoscale Horiz ; 9(2): 264-277, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38019263

ABSTRACT

The flourish of two-dimensional (2D) materials provides a versatile platform for building high-performance electronic devices in the atomic thickness regime. However, the presence of the high Schottky barrier at the interface between the metal electrode and the 2D semiconductors, which dominates the injection and transport efficiency of carriers, always limits their practical applications. Herein, we show that the Schottky barrier can be controllably lifted in the heterostructure consisting of Janus MoSSe and 2D vdW metals by different means. Based on density functional theory calculations and machine learning modelings, we studied the electrical contact between semiconducting monolayer MoSSe and various metallic 2D materials, where a crossover from Schottky to Ohmic/quasi-Ohmic contact is realized. We demonstrated that the band alignment at the interface of the investigated metal-semiconductor junctions (MSJs) deviates from the ideal Schottky-Mott limit because of the Fermi-level pinning effects induced by the interface dipoles. Besides, the effect of the thickness and applied biaxial strain of MoSSe on the electronic structure of the junctions are explored and found to be powerful tuning knobs for electrical contact engineering. It is highlighted that using the sure-independence-screening-and-sparsifying-operator machine learning method, a general descriptor WM3/exp(Dint) was developed, which enables the prediction of the Schottky barrier height for different MoSSe-based MSJ. These results provide valuable theoretical guidance for realizing ideal Ohmic contacts in electronic devices based on the Janus MoSSe semiconductors.

3.
J Colloid Interface Sci ; 658: 114-126, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38100968

ABSTRACT

The development of N2 reduction reaction (NRR) electrocatalysts with excellent activity and selectivity is of great significance, but adsorption-energy linear scaling relations between reaction intermediates severely hamper the realization of this aspiration. Here, we propose an elegant strain engineering strategy to break the linear relations in NRR to promote catalytic activity and selectivity. Our results show that the N-N bond lengths of adsorbed N2 with side-on and end-on configurations exhibit opposite variations under strains, which is illuminated by establishing two different N2 activation mechanisms of "P-P" (Pull-Pull) and "E-E" (Electron-Electron). Then, we highlight that strain engineering can break the linear scaling relations in NRR, selectively optimizing the adsorption of key NH2NH2** and NH2* intermediates to realize a lower limiting potential (UL). Particularly, the catalytic activity-selectivity trade-off of NRR on MXene can be circumvented, resulting in a low UL of -0.25 V and high Faraday efficiency (FE), which is further elucidated to originate from the strain-modulated electronic structures. Last but not least, the catalytic sustainability of MXene under strain has been guaranteed. This work not only provides fundamental insights into the strain effect on catalysis but also pioneers a new avenue toward the rational design of superior NRR catalysts.

4.
Small Methods ; : e2301282, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38084465

ABSTRACT

2D thin films, possessing atomically thin thickness, are emerging as promising candidates for next-generation electronic devices, due to their novel properties and high performance. In the early years, a wide variety of 2D materials are prepared using several methods (mechanical/liquid exfoliation, chemical vapor deposition, etc.). However, the limited size of 2D flakes hinders their fundamental research and device applications, and hence the effective large-scale preparation of 2D films is still challenging. Recently, pulsed laser deposition (PLD) has appeared to be an impactful method for wafer-scale growth of 2D films, owing to target-maintained stoichiometry, high growth rate, and efficiency. In this review, the recent advances on the PLD preparation of 2D films are summarized, including the growth mechanisms, strategies, and materials classification. First, efficacious strategies of PLD growth are highlighted. Then, the growth, characterization, and device applications of various 2D films are presented, such as graphene, h-BN, MoS2 , BP, oxide, perovskite, semi-metal, etc. Finally, the potential challenges and further research directions of PLD technique is envisioned.

5.
J Phys Chem Lett ; 14(46): 10489-10498, 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-37967465

ABSTRACT

Two-dimensional materials are considered to be promising for next-generation electronic and energy devices. However, the limited availability of 2D materials hinders their applications. Herein, we employed high-throughput computation to discover new 2D materials by cleaving the bulk and to investigate their electronic, thermoelectric, and optoelectronic properties. Using our database containing 810 structures of chalcogenides ABX3 (A or B = Al, Ga, In, Si, Ge, Sn, P, As, Sb, and Bi; X = S, Se, and Te), we identified 204 new 2D compounds promising for experimental preparation according to the exfoliation energy. Notably, 96 of them are more easily exfoliated than graphene, 52 compounds show higher Seebeck coefficients than Bi2Te3 at 300 K, and 20 compounds have power factors beyond 2 × 10-3 Wm-1 K-2 at 900 K. Also, 6 new compounds exhibit high theoretical photovoltaic efficiency exceeding 30%. Our findings expand the 2D materials family and provide new 2D compounds for sustainable thermoelectric and optoelectronic energy applications.

6.
Angew Chem Int Ed Engl ; 62(49): e202315182, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-37872352

ABSTRACT

The exploration of inexpensive and efficient catalysts for oxygen reduction reaction (ORR) is crucial for chemical and energy industries. Carbon materials have been proved promising with different catalysts enabling 2 and 4e- ORR. Nevertheless, their ORR activity and selectivity is still complex and under debate in many cases. Many structures of these active carbon materials are also chemically unstable for practical implementations. Unlike the well-discussed structures, this work presents a strategy to promote efficient and stable 2e- ORR of carbon materials through the synergistic effect of lattice distortion and H-passivation (on the distorted structure). We show how these structures can be formed on carbon cloth, and how the reproducible chemical adsorption can be realized on these structures for efficient and stable H2 O2 production. The work here gives not only new understandings on the 2e- ORR catalysis, but also the robust catalyst which can be directly used in industry.

7.
J Colloid Interface Sci ; 652(Pt B): 1954-1964, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37690303

ABSTRACT

Exploring multifunctional electrocatalysts to realize efficient hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR) is urgently desired for developing novel renewable energy storage and conversion technologies. However, integrating these three merits in one single catalyst remains a big challenge due to the difficulty in balancing the adsorption strengths of multiple reaction intermediates. Herein, through first-principles calculations, we systematically investigated the electrocatalytic activity of M2B2, M3B4, and M4B6 type MBenes (M = Cr, Mn, Fe, Co, and Ni) for multifunctional HER, OER, and ORR. The results indicate that most of the investigated MBenes show outstanding catalytic activity for HER with hydrogen adsorption Gibbs free energy close to the optimal value (0 eV). Thereinto, Ni2B2 and Co3B4 MBenes can be promising multifunctional HER/OER/ORR electrocatalysts, and Fe3B4 MBene is expected to be a promising bifunctional electrocatalyst for HER/ORR. Especially, Ni2B2 MBene is even better than the benchmark RuO2 catalyst with ultralow low overpotentials of 0.26 and 0.30 V for OER and ORR, respectively. Then, we proposed that the overpotentials of OER/ORR can be well described by the varied ΔGOH* on MBene, which has been further illuminated through the d-band center and charge transfer analysis. Importantly, new scaling relations between the adsorption energies of OOH* and O* on MBenes have been established, where ΔGOOH* and ΔGO* possess different slopes versus ΔGOH*, allowing the significantly lower overpotentials of OER and ORR to be achieved. This work provides not only promising multifunctional HER/OER/ORR electrocatalysts but also new scaling relations to achieve the rational design of MBene-based electrocatalysts.

8.
J Am Chem Soc ; 144(13): 5878-5886, 2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35238543

ABSTRACT

High-performance functional materials are the cornerstones of the continuous advance of modern science and technology, but the development of new materials is still challenging. Here, we propose a robust design strategy for novel crystalline solids based on group-theory classification and high-throughput computation, as demonstrated by the successful identification of new optoelectronic semiconductors. First, by means of theoretical group analysis and composition engineering, we obtained 78 prototypical crystal structures and built a computational materials database containing 21,060 ternary chalcogenide compounds. Our high-throughput screening of the coordination characteristics, phase stability, and electronic structures provided 97 candidate semiconductors, including 93 completely new compounds. Among them, 22 crystals with excellent dynamical and thermal stability are predicted to show high photovoltaic conversion efficiency (>30%), comparable to the currently most efficient single-junction GaAs solar cell, owing to their optimal electronic properties and outstanding optical absorption. This discovery of new chalcogenide crystals offers excellent candidates for optoelectronic applications and suggests that our design strategy is a promising way to search for unknown high-performance functional materials.

9.
Nanoscale Horiz ; 7(3): 276-287, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35108718

ABSTRACT

Two-dimensional transition metal carbides (MXenes) have great potential to achieve intrinsic magnetism due to their available chemical and structural diversity. In this work, by spin-polarized density functional theory calculations, we designed and comprehensively investigated 50 double transition metal (DTM) MXenes MCr2CTx (T = H, O, F, OH, or bare) based on the chemical formula of M2C (M = Sc, Y, Ti, Zr, Hf, V, Nb, Ta, Mo, W). We highlight that ferromagnetic half-metallicity, antiferromagnetic semiconduction, as well as antiferromagnetic half-metallicity have been achieved in the DTM MXenes. Herein, ferromagnetic half-metallic ScCr2C2, ScCr2C2H2, ScCr2C2F2, and YCr2C2H2 are characterized with wide band gaps and high Curie temperatures. Very interestingly, the ScCr2C2-based magnetic tunnel junction presents a tunnel magnetoresistance ratio as high as 176 000%. In addition, the antiferromagnetic semiconducting TiCr2C2, ZrCr2C2, and ZrCr2C2(OH)2, possessing moderate band gaps and high Néel temperatures, have been predicted. Especially, the Néel temperature of ZrCr2C2(OH)2 can reach 425 K. Moreover, the Dirac cone-like band structure feature is highlighted in antiferromagnetic half-metallic ZrCr2C2H2. Our study provides a new potential strategy for designing MXenes in spintronics.

10.
Nanoscale Horiz ; 5(12): 1566-1573, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33073287

ABSTRACT

Ultrathin semiconductors with great electrical and photovoltaic performance hold tremendous promise for fundamental research and applications in next-generation electronic devices. Here, we report new 2D direct-bandgap semiconductors, namely mono- and few-layer In2Ge2Te6, with a range of desired properties from ab initio simulations. We suggest that 2D In2Ge2Te6 samples should be highly stable and can be experimentally fabricated by mechanical exfoliation. They are predicted to exhibit extraordinary optical absorption and high photovoltaic conversion efficiency (≥31.8%), comparable to the most efficient single-junction GaAs solar cell. We reveal that, thanks to the presence of van Hove singularities in the band structure, unusual quantum-phase transitions could be induced in monolayers via electrostatic doping. Furthermore, taking bilayer In2Ge2Te6 as a prototypical system, we demonstrate the application of van der Waals pressure as a promising strategy to tune the electronic and stacking property of 2D crystals. Our work creates exciting opportunities to explore various quantum phases and atomic stacking, as well as potential applications of 2D In2Ge2Te6 in future nanoelectronics.

11.
Nano Lett ; 20(11): 8273-8281, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33108209

ABSTRACT

A novel strategy has been proposed to produce in situ Li2S at the interfacial layer between lithium anode and the solid electrolyte, by using an amorphous-sulfide-LiTFSI-poly(vinylidene difluoride) (PVDF) composite solid electrolyte (SLCSE). Besides retarding the decomposition of PVDF in CSE, the Li2S-modified interfacial layer (SMIL) also improves the wettability between lithium metal and SLCSE which in turn optimizes the lithium deposition process. Our density functional theory calculation results reveal that the migration energy barrier of Li passing through SMIL is much lower than that of Li passing through LiF-modified interfacial layer (FMIL) formed from the decomposition of PVDF. The as-prepared SLCSE shows a Li ionic transference number of 0.44 and Li ion conductivity of 3.42 × 10-4 S/cm at room temperature, and the Li||SLCSE||LiFePO4 cell exhibits an outstanding rate performance with a capacity of 153, 144, 131, and 101 mAh/g at a current density of 0.05, 0.10, 0.25, and 0.50 mA/cm2, respectively.

12.
ACS Appl Mater Interfaces ; 12(40): 45184-45191, 2020 Oct 07.
Article in English | MEDLINE | ID: mdl-32914966

ABSTRACT

The semiconductor-metal transition (SMT) enables multiple applications of one single material, especially in modern devices. How to control it remains one of the most intriguing questions in material physics/chemistry, especially in two-dimensional layered materials. In this work, we report realization of SMT in MoS2-xOx bilayers, driven by the concentration gradient of the chalcogen atom across the van der Waals (vdW) gap of the disordered bilayers. Using the cluster expansion method, we determined that either semiconducting (stable) or metallic states (metastable) can be realized in MoS2-xOx bilayers with the same composition. Machine learning analysis revealed that the concentration gradient of the chalcogen atom across the vdW gap is the leading fingerprint of SMT, with structural distortion induced by atom mixing being a significant secondary factor. The electronic origin of the SMT is the broadening of the Mo dz2 and O pz bands, accompanied by the redistribution of the d electrons. This in-vdW-gap composition-gradient-driven SMT phenomenon also applies to MoSe2-xOx and MoTe2-xOx bilayers. The present work provides an alternative mechanism of SMT and demonstrates that the composition gradient across the vdW gap in the bilayer materials can be another degree of freedom to tune the band gaps without introducing extrinsic elements. Our findings will benefit the material design for small-scale and energy-efficient electronic devices.

13.
J Phys Chem Lett ; 10(14): 3922-3928, 2019 Jul 18.
Article in English | MEDLINE | ID: mdl-31251625

ABSTRACT

2D magnetic semiconductors are intriguing for their great potential applications in spintronic nanodevices. Despite intensive research for decades, intrinsically 2D magnetic Janus semiconductors are scarce, and their design guidelines remain elusive. Herein we propose new 2D Janus Cr2O2XY (X = Cl, Y = Br/I) ferromagnets with asymmetric out-of-plane structural configurations from ab initio calculations. Abnormally, 2D Janus Cr2O2XY crystals with Pmm2 structures derived from pristine CrOX compounds are dynamically metastable. By introducing novel structural phase transitions, we generated new Pma2 phases with lower total energy and great dynamical stability. These new Janus Cr2O2XY monolayers are intrinsically ferromagnetic semiconductors and could be easily synthesized from experiment. Most interestingly, exotic quantum-phase transitions from the ferromagnetic semiconductor to the antiferromagnetic metal/semiconductor could be achieved in the Cr2O2ClI monolayer by applying compressive strains. Our study provides an alternative strategy to design new Janus Cr2O2XY monolayers and will inspire further investigations on relevant materials for electronic and spintronic applications.

14.
Nanoscale ; 11(12): 5180-5187, 2019 Mar 21.
Article in English | MEDLINE | ID: mdl-30843576

ABSTRACT

The development of an all-inorganic lead-free perovskite nanocrystal is of crucial importance to solve the instability and lead toxicity of organic-inorganic lead hybrid perovskites. Herein, single-layered Cs4CuSb2Cl12 nanocrystals (NCs) with a narrow band gap of 1.6 eV were prepared for the first time via an ultrasonic exfoliation technique. This powerful top-down method was further generalized to synthesize a class of lead-free perovskite (Cs3Bi2X9 and Cs3Sb2X9) NCs. The experimental and theoretical studies revealed that not only inter-layer van der Waals forces but also in-plane chemical bonds played a critical role in the exfoliation process. Specifically, smaller uniform-sized NCs were observed for Cs4CuSb2Cl12 (∼3 nm) as compared to those for Cs3Sb2Cl9 (∼20 nm) although both Cs4CuSb2Cl12 and Cs3Sb2Cl9 exhibited a similar exfoliation energy (∼0.310 J m-2). This can be ascribed to the weaker in-plane chemical bonds of Cu-Cl (2.808 Å) and Sb-Cl (2.924 Å) in Cs4CuSb2Cl12 than the uniform Cl-Sb bond (2.69 Å) in Cs3Sb2Cl9 that allow for an easier exfoliation process. In addition, exfoliation of the Cs4CuSb2Cl12 microcrystal into NCs results in an indirect-to-direct bandgap transition and a reduced electron effective mass, which provides a rapid and steady photoelectrochemical response, demonstrating that Cs4CuSb2Cl12 NCs are a promising candidate for optoelectronic applications.

15.
Phys Chem Chem Phys ; 21(3): 1315-1323, 2019 Jan 21.
Article in English | MEDLINE | ID: mdl-30574640

ABSTRACT

Composition regulation of semiconductors can engineer the band structures and hence optimize their properties for better applications. Herein, we report a BixSb2-xTe3 (BST) single QL with high ZT values (∼1.2 to ∼1.5) at 300 K across a wide range of compositions 0 < x≤ 1. The improved description of band structures by the unfold method reveals the multi-valley bands near the Fermi energy. The high power factor of a p-type BST single QL originates from the robust multi-valley character of valence bands. The wide composition range is ensured by the valence band maximum dominated by the antibonding states of Sb-Te2 bonds, which would be affected little by the disorder. The optimal composition for the BST single QL is attributed to the different contributions from Sb and Bi to the valence band edge. This work paves the way for the further combination of a large power factor and low thermal conductivity across a wide range of compositions.

16.
Phys Chem Chem Phys ; 20(29): 19689-19697, 2018 Jul 25.
Article in English | MEDLINE | ID: mdl-30015338

ABSTRACT

Efficiently modulating the thermal transport performance of materials including MXenes is highly desired as heat transfer is critical in a wide range of applications. However, the design principles for MXenes to achieve optimized thermal conductivity are not yet understood. Herein we highlight that the thermal conductivity modulation can be achieved by altering the surface fuctionalization, which also exhibits unexpected coincident effects on both the lattice and electron contribution to thermal transport. Our results indicate that the functionalization of O significantly decreases both the lattice and electron thermal conductivities of Ti2C MXenes because O will induce not only a shorter phonon relaxation time but also a metal-semiconductor transition, showing great potential for applications including thermoelectrics. In contrast to O, after being functionalized by F or OH both the lattice and electron thermal conductivities are increased, which will improve heat dissipation in electronics and batteries. Our findings will provide a fundamental guideline to the design of MXene-based devices with optimal thermal transport performance.

17.
J Am Chem Soc ; 140(7): 2417-2420, 2018 02 21.
Article in English | MEDLINE | ID: mdl-29400056

ABSTRACT

Intrinsically ferromagnetic 2D semiconductors are essential and highly sought for nanoscale spintronics, but they can only be obtained from ferromagnetic bulk crystals, while the possibility to create 2D intrinsic ferromagnets from bulk antiferromagnets remains unknown. Herein on the basis of ab initio calculations, we demonstrate this feasibility with the discovery of intrinsic ferromagnetism in an emerging class of single-layer 2D semiconductors CrOX (CrOCl and CrOBr monolayers), which show robust ferromagnetic ordering, large spin polarization, and high Curie temperature. These 2D crystals promise great dynamical and thermal stabilities as well as easy experimental fabrication from their bulk antiferromagnets. The Curie temperature of 2D CrOCl is 160 K, which exceeds the record (155 K) of the most-studied dilute magnetic GaMnAs materials, and could be further enhanced by appropriate strains. Our study offers an alternative promising way to create 2D intrinsic ferromagnets from their antiferromagnetic bulk counterparts and also renders 2D CrOX monolayers great platform for future spintronics.

18.
Phys Chem Chem Phys ; 19(48): 32404-32411, 2017 Dec 13.
Article in English | MEDLINE | ID: mdl-29185563

ABSTRACT

Hydrogen and oxygen play an important role in the hydrogen embrittlement and oxidation of novel Co-based alloys with γ/γ' microstructure. In this study, the adsorption of hydrogen and oxygen atoms on the FCC-Co(111) surface and their diffusion behavior from the surface into the sub-layers and bulk have been investigated by means of first-principles calculations. It is observed that hydrogen and oxygen atoms prefer to adsorb on the fcc and hcp (threefold hollow) sites, respectively. The hydrogen atom can penetrate into the first and second sub-layers energetically, while it is not feasible for the oxygen atom as diffusion from the surface into the first sub-layer is more difficult. It is found that the calculated diffusion coefficients of hydrogen are in good agreement with the available experimental data. Finally, we briefly discuss the changes in total magnetic moment along the Oct-Tet-Oct diffusion path and the associated electronic structures. The present work is helpful to provide comprehensive guidance for the development and applications of novel Co-based alloys.

19.
Inorg Chem ; 56(16): 9973-9978, 2017 Aug 21.
Article in English | MEDLINE | ID: mdl-28792220

ABSTRACT

Tc-based oxides are of interest because of their complex crystalline structures. In this work, the phonon dispersions, lattice distortions, and elastic constants of TcO2 at external pressures up to 120 GPa were comprehensively studied using first-principles calculations. It is found that the lattice dynamic stability of TcO2 can be assessed by fitting the Γ-Z acoustical phonon branch. The applied external pressure can be divided into three ranges: the low-pressure stable range, the middle-pressure buckling range, and the high-pressure unstable range. Interestingly, the variation tendency of the low-pressure stable range is very close to that of the high-pressure unstable range. On the other hand, the TcO2 lattice responds intensely to external pressure in the middle-pressure buckling range, which can be sustained under about 71 GPa pressure. More importantly, we have unraveled the pressure-induced lattice distortion in TcO2, which leads to anomalous behaviors for the lattice constants, Tc-O bond lengths, and elastic constants at 10 and 20 GPa external pressures.

20.
J Am Chem Soc ; 139(32): 11125-11131, 2017 08 16.
Article in English | MEDLINE | ID: mdl-28731338

ABSTRACT

Atomically thin two-dimensional (2D) materials have received considerable research interest due to their extraordinary properties and promising applications. Here we predict the monolayered indium triphosphide (InP3) as a new semiconducting 2D material with a range of favorable functional properties by means of ab initio calculations. The 2D InP3 crystal shows high stability and promise of experimental synthesis. It possesses an indirect band gap of 1.14 eV and a high electron mobility of 1919 cm2 V-1 s-1, which can be strongly manipulated with applied strain. Remarkably, the InP3 monolayer suggests tunable magnetism and half-metallicity under hole doping or defect engineering, which is attributed to the novel Mexican-hat-like bands and van Hove singularities in its electronic structure. A semiconductor-metal transition is also revealed by doping 2D InP3 with electrons. Furthermore, monolayered InP3 exhibits extraordinary optical absorption with significant excitonic effects in the entire range of the visible light spectrum. All these desired properties render 2D InP3 a promising candidate for future applications in a wide variety of technologies, in particular for electronic, spintronic, and photovoltaic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...