Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Microbiol Spectr ; : e0351623, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687064

ABSTRACT

Recent case reports and epidemiological data suggest that fungal infections represent an underappreciated complication among people with severe COVID-19. However, the frequency of fungal colonization in patients with COVID-19 and associations with specific immune responses in the airways remain incompletely defined. We previously generated a single-cell RNA-sequencing data set characterizing the upper respiratory microenvironment during COVID-19 and mapped the relationship between disease severity and the local behavior of nasal epithelial cells and infiltrating immune cells. Our previous study, in agreement with findings from related human cohorts, demonstrated that a profound deficiency in host immunity, particularly in type I and type III interferon signaling in the upper respiratory tract, is associated with rapid progression to severe disease and worse clinical outcomes. We have now performed further analysis of this cohort and identified a subset of participants with severe COVID-19 and concurrent detection of Candida species-derived transcripts within samples collected from the nasopharynx and trachea. Here, we present the clinical characteristics of these individuals. Using matched single-cell transcriptomic profiles of these individuals' respiratory mucosa, we identify epithelial immune signatures suggestive of IL17 stimulation and anti-fungal immunity. Further, we observe a significant expression of anti-fungal inflammatory cascades in the nasal and tracheal epithelium of all participants who went on to develop severe COVID-19, even among participants without detectable genetic material from fungal pathogens. Together, our data suggest that IL17 stimulation-in part driven by Candida colonization-and blunted interferon signaling represent a common feature of severe COVID-19 infection. IMPORTANCE: In this paper, we present an analysis suggesting that symptomatic and asymptomatic fungal coinfections can impact patient disease progression during COVID-19 hospitalization. By looking into the presence of other pathogens and their effect on the host immune response during COVID-19 hospitalizations, we aim to offer insight into an underestimated scenario, furthering our current knowledge of determinants of severity that could be considered for future diagnostic and intervention strategies.

2.
Genome Med ; 16(1): 24, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38317183

ABSTRACT

BACKGROUND: The Lentivirus human immunodeficiency virus (HIV) causes chronic inflammation and AIDS in humans, with variable rates of disease progression between individuals driven by both host and viral factors. Similarly, simian lentiviruses vary in their pathogenicity based on characteristics of both the host species and the virus strain, yet the immune underpinnings that drive differential Lentivirus pathogenicity remain incompletely understood. METHODS: We profile immune responses in a unique model of differential lentiviral pathogenicity where pig-tailed macaques are infected with highly genetically similar variants of SIV that differ in virulence. We apply longitudinal single-cell transcriptomics to this cohort, along with single-cell resolution cell-cell communication techniques, to understand the immune mechanisms underlying lentiviral pathogenicity. RESULTS: Compared to a minimally pathogenic lentiviral variant, infection with a highly pathogenic variant results in a more delayed, broad, and sustained activation of inflammatory pathways, including an extensive global interferon signature. Conversely, individual cells infected with highly pathogenic Lentivirus upregulated fewer interferon-stimulated genes at a lower magnitude, indicating that highly pathogenic Lentivirus has evolved to partially escape from interferon responses. Further, we identify CXCL10 and CXCL16 as important molecular drivers of inflammatory pathways specifically in response to highly pathogenic Lentivirus infection. Immune responses to highly pathogenic Lentivirus infection are characterized by amplifying regulatory circuits of pro-inflammatory cytokines with dense longitudinal connectivity. CONCLUSIONS: Our work presents a model of lentiviral pathogenicity where failures in early viral control mechanisms lead to delayed, sustained, and amplifying pro-inflammatory circuits, which in turn drives disease progression.


Subject(s)
Lentivirus Infections , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Humans , Simian Immunodeficiency Virus/genetics , Feedback , Disease Progression , Immunity , Interferons
3.
medRxiv ; 2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36324802

ABSTRACT

Recent case reports and epidemiological data suggest fungal infections represent an under-appreciated complication among people with severe COVID-19. However, the frequency of fungal colonization in patients with COVID-19 and associations with specific immune responses in the airways remain incompletely defined. We previously generated a single-cell RNA-sequencing (scRNA-seq) dataset characterizing the upper respiratory microenvironment during COVID-19, and mapped the relationship between disease severity and the local behavior of nasal epithelial cells and infiltrating immune cells. Our study, in agreement with findings from related human cohorts, demonstrated that a profound deficiency in host immunity, particularly in type I and type III interferon signaling in the upper respiratory tract, is associated with rapid progression to severe disease and worse clinical outcomes. We have now performed further analysis of this cohort and identified a subset of participants with severe COVID-19 and concurrent detection of Candida species-derived transcripts within samples collected from the nasopharynx and trachea. Here, we present the clinical characteristics of these individuals, including confirmatory diagnostic testing demonstrating elevated serum (1, 3)-ß-D-glucan and/or confirmed fungal culture of the predicted pathogen. Using matched single-cell transcriptomic profiles of these individuals' respiratory mucosa, we identify epithelial immune signatures suggestive of IL-17 stimulation and anti-fungal immunity. Further, we observe significant expression of anti-fungal inflammatory cascades in the nasal and tracheal epithelium of all participants who went on to develop severe COVID-19, even among participants without detectable genetic material from fungal pathogens. Together, our data suggests that IL-17 stimulation - in part driven by Candida colonization - and blunted type I/III interferon signaling represents a common feature of severe COVID-19 infection.

4.
Front Pharmacol ; 12: 718484, 2021.
Article in English | MEDLINE | ID: mdl-34759819

ABSTRACT

Many patients infected with coronaviruses, such as SARS-CoV-2 and NL63 that use ACE2 receptors to infect cells, exhibit gastrointestinal symptoms and viral proteins are found in the human gastrointestinal tract, yet little is known about the inflammatory and pathological effects of coronavirus infection on the human intestine. Here, we used a human intestine-on-a-chip (Intestine Chip) microfluidic culture device lined by patient organoid-derived intestinal epithelium interfaced with human vascular endothelium to study host cellular and inflammatory responses to infection with NL63 coronavirus. These organoid-derived intestinal epithelial cells dramatically increased their ACE2 protein levels when cultured under flow in the presence of peristalsis-like mechanical deformations in the Intestine Chips compared to when cultured statically as organoids or in Transwell inserts. Infection of the intestinal epithelium with NL63 on-chip led to inflammation of the endothelium as demonstrated by loss of barrier function, increased cytokine production, and recruitment of circulating peripheral blood mononuclear cells (PBMCs). Treatment of NL63 infected chips with the approved protease inhibitor drug, nafamostat, inhibited viral entry and resulted in a reduction in both viral load and cytokine secretion, whereas remdesivir, one of the few drugs approved for COVID19 patients, was not found to be effective and it also was toxic to the endothelium. This model of intestinal infection was also used to test the effects of other drugs that have been proposed for potential repurposing against SARS-CoV-2. Taken together, these data suggest that the human Intestine Chip might be useful as a human preclinical model for studying coronavirus related pathology as well as for testing of potential anti-viral or anti-inflammatory therapeutics.

5.
PLoS Pathog ; 17(9): e1009804, 2021 09.
Article in English | MEDLINE | ID: mdl-34529726

ABSTRACT

Prior studies have demonstrated that immunologic dysfunction underpins severe illness in COVID-19 patients, but have lacked an in-depth analysis of the immunologic drivers of death in the most critically ill patients. We performed immunophenotyping of viral antigen-specific and unconventional T cell responses, neutralizing antibodies, and serum proteins in critically ill patients with SARS-CoV-2 infection, using influenza infection, SARS-CoV-2-convalescent health care workers, and healthy adults as controls. We identify mucosal-associated invariant T (MAIT) cell activation as an independent and significant predictor of death in COVID-19 (HR = 5.92, 95% CI = 2.49-14.1). MAIT cell activation correlates with several other mortality-associated immunologic measures including broad activation of CD8+ T cells and non-Vδ2 γδT cells, and elevated levels of cytokines and chemokines, including GM-CSF, CXCL10, CCL2, and IL-6. MAIT cell activation is also a predictor of disease severity in influenza (ECMO/death HR = 4.43, 95% CI = 1.08-18.2). Single-cell RNA-sequencing reveals a shift from focused IFNα-driven signals in COVID-19 ICU patients who survive to broad pro-inflammatory responses in fatal COVID-19 -a feature not observed in severe influenza. We conclude that fatal COVID-19 infection is driven by uncoordinated inflammatory responses that drive a hierarchy of T cell activation, elements of which can serve as prognostic indicators and potential targets for immune intervention.


Subject(s)
COVID-19/immunology , COVID-19/mortality , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antigens, CD/immunology , Antigens, Differentiation, T-Lymphocyte/immunology , B-Lymphocytes/immunology , Biomarkers/blood , Blood Proteins/metabolism , Cohort Studies , Critical Illness/mortality , Female , Humans , Immunophenotyping , Influenza, Human/immunology , Lectins, C-Type/immunology , Lymphocyte Activation , Male , Middle Aged , Mucosal-Associated Invariant T Cells/immunology , Patient Acuity
6.
Cell ; 184(18): 4713-4733.e22, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34352228

ABSTRACT

SARS-CoV-2 infection can cause severe respiratory COVID-19. However, many individuals present with isolated upper respiratory symptoms, suggesting potential to constrain viral pathology to the nasopharynx. Which cells SARS-CoV-2 primarily targets and how infection influences the respiratory epithelium remains incompletely understood. We performed scRNA-seq on nasopharyngeal swabs from 58 healthy and COVID-19 participants. During COVID-19, we observe expansion of secretory, loss of ciliated, and epithelial cell repopulation via deuterosomal cell expansion. In mild and moderate COVID-19, epithelial cells express anti-viral/interferon-responsive genes, while cells in severe COVID-19 have muted anti-viral responses despite equivalent viral loads. SARS-CoV-2 RNA+ host-target cells are highly heterogenous, including developing ciliated, interferon-responsive ciliated, AZGP1high goblet, and KRT13+ "hillock"-like cells, and we identify genes associated with susceptibility, resistance, or infection response. Our study defines protective and detrimental responses to SARS-CoV-2, the direct viral targets of infection, and suggests that failed nasal epithelial anti-viral immunity may underlie and precede severe COVID-19.


Subject(s)
COVID-19/immunology , COVID-19/virology , Immunity , SARS-CoV-2/physiology , Severity of Illness Index , Adult , Aged , Bystander Effect , COVID-19/genetics , Cohort Studies , Female , Humans , Male , Middle Aged , Nasopharynx/pathology , Nasopharynx/virology , RNA, Viral/analysis , RNA, Viral/genetics , Respiratory Mucosa/pathology , Respiratory Mucosa/virology , Transcription, Genetic , Viral Load
7.
bioRxiv ; 2021 Feb 20.
Article in English | MEDLINE | ID: mdl-33619488

ABSTRACT

Infection with SARS-CoV-2, the virus that causes COVID-19, can lead to severe lower respiratory illness including pneumonia and acute respiratory distress syndrome, which can result in profound morbidity and mortality. However, many infected individuals are either asymptomatic or have isolated upper respiratory symptoms, which suggests that the upper airways represent the initial site of viral infection, and that some individuals are able to largely constrain viral pathology to the nasal and oropharyngeal tissues. Which cell types in the human nasopharynx are the primary targets of SARS-CoV-2 infection, and how infection influences the cellular organization of the respiratory epithelium remains incompletely understood. Here, we present nasopharyngeal samples from a cohort of 35 individuals with COVID-19, representing a wide spectrum of disease states from ambulatory to critically ill, as well as 23 healthy and intubated patients without COVID-19. Using standard nasopharyngeal swabs, we collected viable cells and performed single-cell RNA-sequencing (scRNA-seq), simultaneously profiling both host and viral RNA. We find that following infection with SARS-CoV-2, the upper respiratory epithelium undergoes massive reorganization: secretory cells diversify and expand, and mature epithelial cells are preferentially lost. Further, we observe evidence for deuterosomal cell and immature ciliated cell expansion, potentially representing active repopulation of lost ciliated cells through coupled secretory cell differentiation. Epithelial cells from participants with mild/moderate COVID-19 show extensive induction of genes associated with anti-viral and type I interferon responses. In contrast, cells from participants with severe lower respiratory symptoms appear globally muted in their anti-viral capacity, despite substantially higher local inflammatory myeloid populations and equivalent nasal viral loads. This suggests an essential role for intrinsic, local epithelial immunity in curbing and constraining viral-induced pathology. Using a custom computational pipeline, we characterized cell-associated SARS-CoV-2 RNA and identified rare cells with RNA intermediates strongly suggestive of active replication. Both within and across individuals, we find remarkable diversity and heterogeneity among SARS-CoV-2 RNA+ host cells, including developing/immature and interferon-responsive ciliated cells, KRT13+ "hillock"-like cells, and unique subsets of secretory, goblet, and squamous cells. Finally, SARS-CoV-2 RNA+ cells, as compared to uninfected bystanders, are enriched for genes involved in susceptibility (e.g., CTSL, TMPRSS2) or response (e.g., MX1, IFITM3, EIF2AK2) to infection. Together, this work defines both protective and detrimental host responses to SARS-CoV-2, determines the direct viral targets of infection, and suggests that failed anti-viral epithelial immunity in the nasal mucosa may underlie the progression to severe COVID-19.

8.
Cell ; 181(5): 1016-1035.e19, 2020 05 28.
Article in English | MEDLINE | ID: mdl-32413319

ABSTRACT

There is pressing urgency to understand the pathogenesis of the severe acute respiratory syndrome coronavirus clade 2 (SARS-CoV-2), which causes the disease COVID-19. SARS-CoV-2 spike (S) protein binds angiotensin-converting enzyme 2 (ACE2), and in concert with host proteases, principally transmembrane serine protease 2 (TMPRSS2), promotes cellular entry. The cell subsets targeted by SARS-CoV-2 in host tissues and the factors that regulate ACE2 expression remain unknown. Here, we leverage human, non-human primate, and mouse single-cell RNA-sequencing (scRNA-seq) datasets across health and disease to uncover putative targets of SARS-CoV-2 among tissue-resident cell subsets. We identify ACE2 and TMPRSS2 co-expressing cells within lung type II pneumocytes, ileal absorptive enterocytes, and nasal goblet secretory cells. Strikingly, we discovered that ACE2 is a human interferon-stimulated gene (ISG) in vitro using airway epithelial cells and extend our findings to in vivo viral infections. Our data suggest that SARS-CoV-2 could exploit species-specific interferon-driven upregulation of ACE2, a tissue-protective mediator during lung injury, to enhance infection.


Subject(s)
Alveolar Epithelial Cells/metabolism , Enterocytes/metabolism , Goblet Cells/metabolism , Interferon Type I/metabolism , Nasal Mucosa/cytology , Peptidyl-Dipeptidase A/genetics , Adolescent , Alveolar Epithelial Cells/immunology , Angiotensin-Converting Enzyme 2 , Animals , Betacoronavirus/physiology , COVID-19 , Cell Line , Cells, Cultured , Child , Coronavirus Infections/virology , Enterocytes/immunology , Goblet Cells/immunology , HIV Infections/immunology , Humans , Influenza, Human/immunology , Interferon Type I/immunology , Lung/cytology , Lung/pathology , Macaca mulatta , Mice , Mycobacterium tuberculosis , Nasal Mucosa/immunology , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/virology , Receptors, Virus/genetics , SARS-CoV-2 , Serine Endopeptidases/metabolism , Single-Cell Analysis , Tuberculosis/immunology , Up-Regulation
9.
Nat Med ; 26(4): 511-518, 2020 04.
Article in English | MEDLINE | ID: mdl-32251406

ABSTRACT

Cellular immunity is critical for controlling intracellular pathogens, but individual cellular dynamics and cell-cell cooperativity in evolving human immune responses remain poorly understood. Single-cell RNA-sequencing (scRNA-seq) represents a powerful tool for dissecting complex multicellular behaviors in health and disease1,2 and nominating testable therapeutic targets3. Its application to longitudinal samples could afford an opportunity to uncover cellular factors associated with the evolution of disease progression without potentially confounding inter-individual variability4. Here, we present an experimental and computational methodology that uses scRNA-seq to characterize dynamic cellular programs and their molecular drivers, and apply it to HIV infection. By performing scRNA-seq on peripheral blood mononuclear cells from four untreated individuals before and longitudinally during acute infection5, we were powered within each to discover gene response modules that vary by time and cell subset. Beyond previously unappreciated individual- and cell-type-specific interferon-stimulated gene upregulation, we describe temporally aligned gene expression responses obscured in bulk analyses, including those involved in proinflammatory T cell differentiation, prolonged monocyte major histocompatibility complex II upregulation and persistent natural killer (NK) cell cytolytic killing. We further identify response features arising in the first weeks of infection, for example proliferating natural killer cells, which potentially may associate with future viral control. Overall, our approach provides a unified framework for characterizing multiple dynamic cellular responses and their coordination.


Subject(s)
Cell Communication , HIV Infections/genetics , HIV Infections/immunology , Immunity, Cellular/physiology , Single-Cell Analysis/methods , Acute Disease , Acute-Phase Reaction/genetics , Acute-Phase Reaction/immunology , Acute-Phase Reaction/pathology , Adolescent , Adult , Cell Communication/genetics , Cell Communication/immunology , Female , Gene Expression Profiling , Gene Regulatory Networks/immunology , HIV Infections/pathology , HIV-1/genetics , HIV-1/pathogenicity , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/pathology , Longitudinal Studies , Sequence Analysis, RNA/methods , Systems Integration , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolism , Viral Load/genetics , Viral Load/immunology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...