Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 337
Filter
1.
Sci China Life Sci ; 67(1): 132-148, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37747674

ABSTRACT

Genome-wide association studies (GWASs) have identified over 140 colorectal cancer (CRC)-associated loci; however, target genes at the majority of loci and underlying molecular mechanisms are poorly understood. Here, we utilized a Bayesian approach, integrative risk gene selector (iRIGS), to prioritize risk genes at CRC GWAS loci by integrating multi-omics data. As a result, a total of 105 high-confidence risk genes (HRGs) were identified, which exhibited strong gene dependencies for CRC and enrichment in the biological processes implicated in CRC. Among the 105 HRGs, CEBPB, located at the 20q13.13 locus, acted as a transcription factor playing critical roles in cancer. Our subsequent assays indicated the tumor promoter function of CEBPB that facilitated CRC cell proliferation by regulating multiple oncogenic pathways such as MAPK, PI3K-Akt, and Ras signaling. Next, by integrating a fine-mapping analysis and three independent case-control studies in Chinese populations consisting of 8,039 cases and 12,775 controls, we elucidated that rs1810503, a putative functional variant regulating CEBPB, was associated with CRC risk (OR=0.90, 95%CI=0.86-0.93, P=1.07×10-7). The association between rs1810503 and CRC risk was further validated in three additional multi-ancestry populations consisting of 24,254 cases and 58,741 controls. Mechanistically, the rs1810503 A to T allele change weakened the enhancer activity in an allele-specific manner to decrease CEBPB expression via long-range promoter-enhancer interactions, mediated by the transcription factor, REST, and thus decreased CRC risk. In summary, our study provides a genetic resource and a generalizable strategy for CRC etiology investigation, and highlights the biological implications of CEBPB in CRC tumorigenesis, shedding new light on the etiology of CRC.


Subject(s)
Colorectal Neoplasms , Gene Regulatory Networks , Humans , Genome-Wide Association Study , Bayes Theorem , Multiomics , Phosphatidylinositol 3-Kinases/genetics , Genetic Predisposition to Disease , Transcription Factors/genetics , Colorectal Neoplasms/metabolism , Polymorphism, Single Nucleotide
2.
Chin Med J (Engl) ; 137(4): 431-440, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-37690994

ABSTRACT

BACKGROUND: Findings on the association of genetic factors and colorectal cancer (CRC) survival are limited and inconsistent, and revealing the mechanism underlying their prognostic roles is of great importance. This study aimed to explore the relationship between functional genetic variations and the prognosis of CRC and further reveal the possible mechanism. METHODS: We first systematically performed expression quantitative trait locus (eQTL) analysis using The Cancer Genome Atlas (TCGA) dataset. Then, the Kaplan-Meier analysis was used to filter out the survival-related eQTL target genes of CRC patients in two public datasets (TCGA and GSE39582 dataset from the Gene Expression Omnibus database). The seven most potentially functional eQTL single nucleotide polymorphisms (SNPs) associated with six survival-related eQTL target genes were genotyped in 907 Chinese CRC patients with clinical prognosis data. The regulatory mechanism of the survival-related SNP was further confirmed by functional experiments. RESULTS: The rs71630754 regulating the expression of endoplasmic reticulum aminopeptidase 1 ( ERAP1 ) was significantly associated with the prognosis of CRC (additive model, hazard ratio [HR]: 1.43, 95% confidence interval [CI]: 1.08-1.88, P = 0.012). The results of dual-luciferase reporter assay and electrophoretic mobility shift assay showed that the A allele of the rs71630754 could increase the binding of transcription factor 3 (TCF3) and subsequently reduce the expression of ERAP1 . The results of bioinformatic analysis showed that lower expression of ERAP1 could affect the tumor immune microenvironment and was significantly associated with severe survival outcomes. CONCLUSION: The rs71630754 could influence the prognosis of CRC patients by regulating the expression of the immune-related gene ERAP1 . TRIAL REGISTRATION: No. NCT00454519 ( https://clinicaltrials.gov/ ).


Subject(s)
Colorectal Neoplasms , Polymorphism, Single Nucleotide , Humans , Prognosis , Genotype , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci , Tumor Microenvironment , Aminopeptidases/genetics , Aminopeptidases/metabolism , Minor Histocompatibility Antigens/genetics
3.
Am J Clin Nutr ; 119(2): 406-416, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38042409

ABSTRACT

BACKGROUND: Dietary patterns have been associated with several cancers, especially gastrointestinal cancer (GIC). However, whether a healthy dietary pattern could modify the risk of GIC among people with different genetic backgrounds is not clear. OBJECTIVE: The objective of the study was to investigate how dietary patterns and genetic susceptibility contribute to the risk of GIC independently and jointly. METHODS: This large-scale prospective cohort study included 105,463 participants in UK Biobank who were aged 40-72 y and cancer-free at baseline. Dietary intake (Oxford WebQ) was used to calculate dietary pattern scores including dietary approach to stop hypertension (DASH) score and healthful plant-based diet index (hPDI). Genetic risk was quantified by a polygenic risk score (PRS) comprising 129 known GIC-associated loci. Cox proportional hazards regression was performed to estimate the associations of dietary patterns and PRS with GIC incidence after adjusting for potential confounders. RESULTS: Over a median follow-up of 11.70 y, 1,661 participants were diagnosed with GIC. DASH and hPDI were associated with 20% and 36% reductions, respectively, in GIC risk. Low PRS was associated with a 30 % decrease in GIC risk (HR: 0.70; 95% CI: 0.62, 0.79). Participants with healthy dietary scores at high-genetic risk had a lower GIC risk with HR of 0.77 (95% CI: 0.60, 0.98) for DASH and 0.66 (95% CI: 0.52, 0.84) for hPDI than those with unhealthy dietary score. Participants with both high-dietary score and low-genetic risk showed the lowest risk of GIC, with HR of 0.58 (95% CI: 0.45, 0.75) for DASH and 0.45 (95% CI: 0.34, 0.58) for hPDI. CONCLUSIONS: Adherence to DASH and hPDI were associated with a lower risk of some gastrointestinal cancers, and these 2 dietary patterns may partly compensate for genetic predispositions to cancer. Our results advance the development of precision medicine strategies that consider both dietary patterns and genetics to improve gastrointestinal health.


Subject(s)
Gastrointestinal Neoplasms , Hypertension , Humans , Prospective Studies , Dietary Patterns , Risk Factors , Diet , Gastrointestinal Neoplasms/etiology , Gastrointestinal Neoplasms/genetics , Plants , Genetic Risk Score , Genetic Predisposition to Disease
4.
Nat Commun ; 14(1): 7900, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38036550

ABSTRACT

Left ventricular regional wall thickness (LVRWT) is an independent predictor of morbidity and mortality in cardiovascular diseases (CVDs). To identify specific genetic influences on individual LVRWT, we established a novel deep learning algorithm to calculate 12 LVRWTs accurately in 42,194 individuals from the UK Biobank with cardiac magnetic resonance (CMR) imaging. Genome-wide association studies of CMR-derived 12 LVRWTs identified 72 significant genetic loci associated with at least one LVRWT phenotype (P < 5 × 10-8), which were revealed to actively participate in heart development and contraction pathways. Significant causal relationships were observed between the LVRWT traits and hypertrophic cardiomyopathy (HCM) using genetic correlation and Mendelian randomization analyses (P < 0.01). The polygenic risk score of inferoseptal LVRWT at end systole exhibited a notable association with incident HCM, facilitating the identification of high-risk individuals. The findings yield insights into the genetic determinants of LVRWT phenotypes and shed light on the biological basis for HCM etiology.


Subject(s)
Cardiomyopathy, Hypertrophic , Genome-Wide Association Study , Humans , Cardiomyopathy, Hypertrophic/diagnostic imaging , Cardiomyopathy, Hypertrophic/genetics , Heart , Heart Ventricles/pathology , Phenotype
5.
Nat Commun ; 14(1): 5958, 2023 09 25.
Article in English | MEDLINE | ID: mdl-37749132

ABSTRACT

Genome-wide association studies have identified numerous variants associated with human complex traits, most of which reside in the non-coding regions, but biological mechanisms remain unclear. However, assigning function to the non-coding elements is still challenging. Here we apply Activity-by-Contact (ABC) model to evaluate enhancer-gene regulation effect by integrating multi-omics data and identified 544,849 connections across 20 cancer types. ABC model outperforms previous approaches in linking regulatory variants to target genes. Furthermore, we identify over 30,000 enhancer-gene connections in colorectal cancer (CRC) tissues. By integrating large-scale population cohorts (23,813 cases and 29,973 controls) and multipronged functional assays, we demonstrate an ABC regulatory variant rs4810856 associated with CRC risk (Odds Ratio = 1.11, 95%CI = 1.05-1.16, P = 4.02 × 10-5) by acting as an allele-specific enhancer to distally facilitate PREX1, CSE1L and STAU1 expression, which synergistically activate p-AKT signaling. Our study provides comprehensive regulation maps and illuminates a single variant regulating multiple genes, providing insights into cancer etiology.


Subject(s)
Genome-Wide Association Study , Neoplasms , Humans , Regulatory Sequences, Nucleic Acid , Gene Expression Regulation , Chromosome Mapping , Alleles , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease , Enhancer Elements, Genetic/genetics , Neoplasms/genetics , Cytoskeletal Proteins/genetics , RNA-Binding Proteins/genetics
6.
Cancer Res ; 83(21): 3650-3666, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37669142

ABSTRACT

Alternative polyadenylation (APA) is emerging as a major mechanism of posttranscriptional regulation. APA can impact the development and progression of cancer, suggesting that the genetic determinants of APA might play an important role in regulating cancer risk. Here, we depicted a pan-cancer atlas of human APA quantitative trait loci (apaQTL), containing approximately 0.7 million apaQTLs across 32 cancer types. Systematic multiomics analyses indicated that cancer apaQTLs could contribute to APA regulation by altering poly(A) motifs, RNA-binding proteins (RBP), and chromatin regulatory elements and were preferentially enriched in genome-wide association studies (GWAS)-identified cancer susceptibility loci. Moreover, apaQTL-related genes (aGene) were broadly related to cancer signaling pathways, high mutational burden, immune infiltration, and drug response, implicating their potential as therapeutic targets. Furthermore, apaQTLs were mapped in Chinese colorectal cancer tumor tissues and then screened for functional apaQTLs associated with colorectal cancer risk in 17,789 cases and 19,951 controls using GWAS-ChIP data, with independent validation in a large-scale population consisting of 6,024 cases and 10,022 controls. A multi-ancestry-associated apaQTL variant rs1020670 with a C>G change in DNM1L was identified, and the G allele contributed to an increased risk of colorectal cancer. Mechanistically, the risk variant promoted aberrant APA and facilitated higher usage of DNM1L proximal poly(A) sites mediated by the RBP CSTF2T, which led to higher expression of DNM1L with a short 3'UTR. This stabilized DNM1L to upregulate its expression, provoking colorectal cancer cell proliferation. Collectively, these findings generate a resource for understanding APA regulation and the genetic basis of human cancers, providing insights into cancer etiology. SIGNIFICANCE: Cancer risk is mediated by alternative polyadenylation quantitative trait loci, including the rs1020670-G variant that promotes alternative polyadenylation of DNM1L and increases colorectal cancer risk.


Subject(s)
Colorectal Neoplasms , Genome-Wide Association Study , Humans , Polyadenylation/genetics , Gene Expression Regulation , Quantitative Trait Loci , Colorectal Neoplasms/genetics , 3' Untranslated Regions/genetics
7.
Arch Toxicol ; 97(10): 2799-2812, 2023 10.
Article in English | MEDLINE | ID: mdl-37587385

ABSTRACT

Tens of thousands of long non-coding RNAs (lncRNAs) have been identified through RNA-seq analysis, but the biological and pathological significance remains unclear. By integrating the genome-wide lncRNA data with a cross-ancestry meta-analysis of PDAC GWASs, we depicted a comprehensive atlas of pancreatic ductal adenocarcinoma (PDAC)-associated lncRNAs, containing 1,204 lncRNA (445 novel lncRNAs and 759 GENCODE annotated lncRNAs) and 4,368 variants. Furthermore, we found that PDAC-associated lncRNAs could function by altering chromatin activity, transcription factors, and RNA-binding proteins binding affinity. Importantly, genetic variants linked to PDAC are preferentially found at PDAC-associated lncRNA regions, supporting the biological and clinical relevance of PDAC-associated lncRNAs. Finally, we prioritized a novel transcript (MICT00000110172.1) of RP11-638I2.4 as a potential tumor promoter. MICT00000110172.1 is able to reinforce the interaction with YY1, which could reverse the effect of YY1 on pancreatic cancer cell cycle arrest to promote the pancreatic cancer growth. G > A change at rs2757535 in the second exon of MICT00000110172.1 induces a spatial structural change and creates a target region for YY1 binding, which enforces the effect of MICT00000110172.1 in an allele-specific manner, and thus confers susceptibility to tumorigenesis. In summary, our results extend the repertoire of PDAC-associated lncRNAs that could act as a starting point for future functional explorations, and the identification of lncRNA-based target therapy.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Pancreatic Neoplasms/genetics , Carcinoma, Pancreatic Ductal/genetics , Alleles , YY1 Transcription Factor/genetics
8.
Gastroenterology ; 165(5): 1151-1167, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37541527

ABSTRACT

BACKGROUND & AIMS: Dysregulation of alternative splicing is implicated in many human diseases, and understanding the genetic variation underlying transcript splicing is essential to dissect the molecular mechanisms of cancers. We aimed to provide a comprehensive functional dissection of splicing quantitative trait loci (sQTLs) in cancer and focus on elucidating its distinct role in colorectal cancer (CRC) mechanisms. METHODS: We performed a comprehensive sQTL analysis to identify genetic variants that control messenger RNA splicing across 33 cancer types from The Cancer Genome Atlas and independently validated in our 154 CRC tissues. Then, large-scale, multicenter, multi-ethnic case-control studies (34,585 cases and 76,023 controls) were conducted to examine the association of these sQTLs with CRC risk. A series of biological experiments in vitro and in vivo were performed to investigate the potential mechanisms of the candidate sQTLs and target genes. RESULTS: The molecular characterization of sQTL revealed its distinct role in cancer susceptibility. Tumor-specific sQTL further showed better response to cancer development. In addition, functionally informed polygenic risk score highlighted the potentiality of sQTLs in the CRC prediction. Complemented by large-scale population studies, we identified that the risk allele (T) of a multi-ancestry-associated sQTL rs61746794 significantly increased the risk of CRC in Chinese (odds ratio, 1.20; 95% CI, 1.12-1.29; P = 8.82 × 10-7) and European (odds ratio, 1.11; 95% CI, 1.07-1.16; P = 1.13 × 10-7) populations. rs61746794-T facilitated PRMT7 exon 16 splicing mediated by the RNA-binding protein PRPF8, thus increasing the level of canonical PRMT7 isoform (PRMT7-V2). Overexpression of PRMT7-V2 significantly enhanced the growth of CRC cells and xenograft tumors compared with PRMT7-V1. Mechanistically, PRMT7-V2 functions as an epigenetic writer that catalyzes the arginine methylation of H4R3 and H3R2, subsequently regulating diverse biological processes, including YAP, AKT, and KRAS pathway. A selective PRMT7 inhibitor, SGC3027, exhibited antitumor effects on human CRC cells. CONCLUSIONS: Our study provides an informative sQTLs resource and insights into the regulatory mechanisms linking splicing variants to cancer risk and serving as biomarkers and therapeutic targets.

9.
Mayo Clin Proc ; 98(8): 1164-1176, 2023 08.
Article in English | MEDLINE | ID: mdl-37422733

ABSTRACT

OBJECTIVE: To evaluate the association of early-life tobacco smoke exposure, especially interacting with cancer genetic variants, with adult cancer. PARTICIPANTS AND METHODS: We examined the associations of in utero tobacco smoke exposure, age of smoking initiation, and their interaction with genetic risk levels with cancer incidence in 393,081 participants from the UK Biobank. Information on tobacco exposure was obtained by self-reported questionnaires. A cancer polygenic risk score was constructed by weighting and integrating 702 genome-wide association studies-identified risk variants. Cox proportional hazards regression models were used to calculate hazard ratios (HRs) for overall cancer and organ-specific cancer incidence. RESULTS: During 11.8 years of follow-up, 23,450 (5.97%) and 23,413 (6.03%) incident cancers were included in the analyses of in utero exposure and age of smoking initiation, respectively. The HR (95% CI) for incident cancer in participants with in utero exposure to tobacco smoke was 1.04 (1.01-1.07) for overall cancer, 1.59 (1.44-1.75) for respiratory cancer, and 1.09 (1.03-1.17) for gastrointestinal cancer. The relative risk of incident cancer increased with earlier smoking initiation (Ptrend<.001), with the HR (95% CI) of 1.44 (1.36-1.51) for overall cancer, 13.28 (11.39-15.48) for respiratory cancer, and 1.72 (1.54-1.91) for gastrointestinal cancer in smokers with initiation in childhood compared with never smokers. Importantly, a positive additive interaction between age of smoking initiation and genetic risk was observed for overall cancer (Padditive=.04) and respiratory cancer (Padditive=.003) incidence. CONCLUSION: In utero exposure and earlier smoking initiation are associated with overall and organ-specific cancer, and age of smoking initiation interaction with genetic risk is associated with respiratory cancer.


Subject(s)
Neoplasms , Tobacco Smoke Pollution , Adult , Humans , Adolescent , Tobacco Smoke Pollution/adverse effects , Incidence , Prospective Studies , Genome-Wide Association Study , Risk Factors , Neoplasms/etiology , Neoplasms/genetics
10.
Environ Toxicol Pharmacol ; 101: 104173, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37302441

ABSTRACT

Bisphenol A (BPA) can be metabolized by metabolic enzymes and may induce abnormal lipid metabolism. We hypothesized that BPA exposure and its interaction with metabolism-related genes might be associated with serum lipid profiles. We performed a two-stage study among 955 middle-aged and elderly participants in Wuhan, China. Urinary BPA level was estimated without (BPA, µg/L) or with (BPA/Cr, µg/g) adjustments for urinary creatinine and ln-transformed values (ln-BPA or ln-BPA/Cr) were used to normalize the asymmetrical distributions. A total of 412 metabolism-related gene variants were selected and used for gene-BPA interaction analysis. Multiple linear regression was used to analyze the interactions between BPA exposure and metabolism-related genes on serum lipid profiles. In the discovery stage, both ln-BPA and ln-BPA/Cr was associated with decreased high-density lipoprotein cholesterol (HDL-C). Gene-urinary BPA interaction for IGFBP7 rs9992658 was observed to associate with HDL-C levels in both discovery and validation stages, with Pinteraction equal to 9.87 × 10-4 (ln-BPA) and 1.22 × 10-3 (ln-BPA/Cr) in combined analyses. In addition, the inverse association of urinary BPA with HDL-C levels was only observed among individuals carrying rs9992658 AA genotype, but not in individuals carrying rs9992658 AC or CC genotypes. The interaction between BPA exposure and metabolism-related gene IGFBP7 (rs9992658) was associated with HDL-C levels.


Subject(s)
Benzhydryl Compounds , Phenols , Middle Aged , Aged , Humans , Benzhydryl Compounds/toxicity , Benzhydryl Compounds/urine , Phenols/toxicity , Phenols/urine , Lipid Metabolism/genetics , Lipids
11.
Arch Toxicol ; 97(7): 2015-2028, 2023 07.
Article in English | MEDLINE | ID: mdl-37245169

ABSTRACT

Although genome-wide association studies (GWASs) have identified over 100 colorectal cancer (CRC) risk loci, an understanding of causal genes or risk variants and their biological functions in these loci remain unclear. Recently, genomic loci 10q26.12 with lead SNP rs1665650 was identified as an essential CRC risk loci of Asian populations. However, the functional mechanism of this region has not been fully clarified. Here, we applied an RNA interfering-based on-chip approach to screen for the genes essential for cell proliferation in the CRC risk loci 10q26.12. Notably, HSPA12A had the most significant effect among the identified genes and functioned as a crucial oncogene facilitating cell proliferation. Moreover, we conducted an integrative fine-mapping analysis to identify putative casual variants and further explored their association with CRC risk in a large-scale Chinese population consisting of 4054 cases and 4054 controls and also independently validated in 5208 cases and 20,832 controls from the UK biobank cohort. We identified a risk SNP rs7093835 in the intron of HSPA12A that was significantly associated with an increased risk of CRC (OR 1.23, 95% CI 1.08-1.41, P = 1.92 × 10-3). Mechanistically, the risk variant could facilitate an enhancer-promoter interaction mediated by the transcriptional factor (TF) GRHL1 and ultimately upregulate HSPA12A expression, which provides functional evidence to support our population findings. Collectively, our study reveals the important role of HSPA12A in CRC development and illustrates a novel enhancer-promoter interaction module between HSPA12A and its regulatory elements rs7093835, providing new insights into the etiology of CRC.


Subject(s)
Colorectal Neoplasms , Genome-Wide Association Study , Humans , Genetic Predisposition to Disease , Promoter Regions, Genetic , Risk , Colorectal Neoplasms/genetics , Polymorphism, Single Nucleotide , Case-Control Studies , HSP70 Heat-Shock Proteins/genetics
12.
Front Public Health ; 11: 1163965, 2023.
Article in English | MEDLINE | ID: mdl-37213605

ABSTRACT

Introduction: Triclosan (TCS), a widely prescribed broad-spectrum antibacterial agent, is an endocrine-disrupting chemical. The relationship and biological mechanisms between TCS exposure and breast cancer (BC) are disputed. We aimed to examine the correlation between urinary TCS exposure and BC risk and estimated the mediating effects of oxidative stress and relative telomere length (RTL) in the above association. Methods: This case-control study included 302 BC patients and 302 healthy individuals in Wuhan, China. We detected urinary TCS, three common oxidative stress biomarkers [8-hydroxy-2-deoxyguanosine (8-OHdG), 8-iso-prostaglandin F2α (8-isoPGF2α), 4-hydroxy-2-nonenal-mercapturic acid (HNE-MA)], and RTL in peripheral blood mononuclear cells. Results: Significant associations were observed between log-transformed urinary concentrations of TCS, 8-OHdG, HNE-MA, 8-isoPGF2α, RTL, and BC risk, with the odds ratios (95% confidence intervals) being 1.58 (1.32-1.91), 3.08 (1.55-6.23), 3.39 (2.45-4.77), 3.99 (2.48-6.54), and 1.67 (1.35-2.09), respectively. Continuous TCS exposure was significantly positively correlated with RTL, HNE-MA, and 8-isoPGF2α (all p<0.05) but not with 8-OHdG (p = 0.060) after adjusting for covariates. The mediated proportions of 8-isoPGF22α and RTL in the relationship between TCS and BC risk were 12.84% and 8.95%, respectively (all p<0.001). Discussion: In conclusion, our study provides epidemiological evidence to confirmed the deleterious effects of TCS on BC and indicated the mediating effect of oxidative stress and RTL on the correlation between TCS and BC risk. Moreover, exploring the contribution of TCS to BC can clarify the biological mechanisms of TCS exposure, provide new clues for the pathogenesis of BC, which is of great significance to improving public health systems.


Subject(s)
Breast Neoplasms , Triclosan , Humans , Female , Triclosan/adverse effects , Leukocytes, Mononuclear , Case-Control Studies , Oxidative Stress , 8-Hydroxy-2'-Deoxyguanosine , Telomere
13.
Int J Cancer ; 153(3): 499-511, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37087737

ABSTRACT

Previous investigations mainly focused on the associations of dietary fatty acids with colorectal cancer (CRC) risk, which ignored gene-environment interaction and mechanisms interpretation. We conducted a case-control study (751 cases and 3058 controls) and a prospective cohort study (125 021 participants) to explore the associations between dietary fatty acids, genetic risks, and CRC. Results showed that high intake of saturated fatty acid (SFA) was associated with a higher risk of CRC than low SFA intake (HR =1.22, 95% CI:1.02-1.46). Participants at high genetic risk had a greater risk of CRC with the HR of 2.48 (2.11-2.91) than those at low genetic risk. A multiplicative interaction of genetic risk and SFA intake with incident CRC risk was found (PInteraction = 7.59 × 10-20 ), demonstrating that participants with high genetic risk and high SFA intake had a 3.75-fold greater risk of CRC than those with low genetic risk and low SFA intake. Furthermore, incorporating PRS and SFA into traditional clinical risk factors improved the discriminatory accuracy for CRC risk stratification (AUC from 0.706 to 0.731). Multi-omics data showed that exposure to SFA-rich high-fat dietary (HFD) can responsively induce epigenome reprogramming of some oncogenes and pathological activation of fatty acid metabolism pathway, which may contribute to CRC development through changes in gut microbiomes, metabolites, and tumor-infiltrating immune cells. These findings suggest that individuals with high genetic risk of CRC may benefit from reducing SFA intake. The incorporation of SFA intake and PRS into traditional clinical risk factors will help improve high-risk sub-populations in individualized CRC prevention.


Subject(s)
Colorectal Neoplasms , Dietary Fats , Humans , Prospective Studies , Case-Control Studies , Dietary Fats/adverse effects , Risk Factors , Fatty Acids/adverse effects , Colorectal Neoplasms/epidemiology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/chemically induced
14.
Mol Carcinog ; 62(7): 991-1000, 2023 07.
Article in English | MEDLINE | ID: mdl-37042568

ABSTRACT

All-trans retinoic acid (ATRA) is the natural and synthetic analogue of vitamin A, playing an essential tumor suppressive role in multiple cancers including the esophageal squamous cell carcinoma (ESCC). Cytochrome P450 family 26 subfamily B member 1 (CYP26B1) exerts a critical regulator of ATRA levels through specific inactivation of ATRA to hydroxylated forms. Our previous exome-wide analyses revealed a rare missense variant in CYP26B1 significantly associated with ESCC risk in the Chinese population. However, it is still unclear whether there are common variants in CYP26B1 affect the susceptibility of ESCC and the tumor promotion role of CYP26B1 in vivo. In this research, we conducted a two-stage case-control study comprised of 5057 ESCC cases and 5397 controls, followed by a series of biochemical experiments to explore the function of CYP26B1 and its common variants in the tumorigenesis of ESCC. Intriguingly, we identified a missense variant rs2241057[A>G] in the fourth exon of CYP26B1 significantly associated with the ESCC risk (combined odds ratio = 1.28; 95% confidence interval = 1.15-1.42; p = 2.96 × 10-6 ). Through further functional analysis, we demonstrated that ESCC cells with the overexpression of rs2241057[G] had a significant lower level of retinoic acid, compared with the overexpression of rs2241057[A] or the control vector. In addition, the CYP26B1 overexpression and knock-out ESCC cells affected cell proliferation rate both in vitro and in vivo. These results highlighted the carcinogenicity of CYP26B1 related to the ATRA metabolism in ESCC risk.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/genetics , Retinoic Acid 4-Hydroxylase/genetics , Esophageal Neoplasms/genetics , Esophageal Neoplasms/metabolism , Case-Control Studies , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Tretinoin
15.
Genome Med ; 15(1): 13, 2023 03 03.
Article in English | MEDLINE | ID: mdl-36869385

ABSTRACT

BACKGROUND: The incidence of early-onset colorectal cancer (EOCRC; patients < 50 years old) has been rising rapidly, whereas the EOCRC genetic susceptibility remains incompletely investigated. Here, we aimed to systematically identify specific susceptible genetic variants for EOCRC. METHODS: Two parallel GWASs were conducted in 17,789 CRC cases (including 1490 EOCRC cases) and 19,951 healthy controls. A polygenic risk score (PRS) model was built based on identified EOCRC-specific susceptibility variants by using the UK Biobank cohort. We also interpreted the potential biological mechanisms of the prioritized risk variant. RESULTS: We identified 49 independent susceptibility loci that were significantly associated with the susceptibility to EOCRC and the diagnosed age of CRC (both P < 5.0×10-4), replicating 3 previous CRC GWAS loci. There are 88 assigned susceptibility genes involved in chromatin assembly and DNA replication pathways, mainly associating with precancerous polyps. Additionally, we assessed the genetic effect of the identified variants by developing a PRS model. Compared to the individuals in the low genetic risk group, the individuals in the high genetic risk group have increased EOCRC risk, and these results were replicated in the UKB cohort with a 1.63-fold risk (95% CI: 1.32-2.02, P = 7.67×10-6). The addition of the identified EOCRC risk loci significantly increased the prediction accuracy of the PRS model, compared to the PRS model derived from the previous GWAS-identified loci. Mechanistically, we also elucidated that rs12794623 may contribute to the early stage of CRC carcinogenesis via allele-specific regulating the expression of POLA2. CONCLUSIONS: These findings will broaden the understanding of the etiology of EOCRC and may facilitate the early screening and individualized prevention.


Subject(s)
Carcinogenesis , Colorectal Neoplasms , Humans , Middle Aged , Alleles , Risk Factors , Chromatin Assembly and Disassembly
16.
Ann Med ; 55(1): 62-71, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36503347

ABSTRACT

BACKGROUND: The epidemiologic studies investigating the association of birthweight and genetic factors with gastrointestinal cancer remain scarce. The study aimed to prospectively assess the interactions and joint effects of birthweight and genetic risk levels on gastrointestinal cancer incidence in adulthood. METHODS: A total of 254,997 participants were included in the UK Biobank study. We used multivariate restricted cubic splines and Cox regression models to estimate the hazard ratios (HRs) and 95% confidential intervals (CI) for the association between birthweight and gastrointestinal cancer risk, then constructed a polygenic risk score (PRS) to assess its interaction and joint effect with birthweight on the development of gastrointestinal cancer. RESULTS: We documented 2512 incident cases during a median follow-up of 8.88 years. Compare with participants reporting a normal birthweight (2.5-4.5 kg), multivariable-adjusted HR of gastrointestinal cancer incidence for participants with high birthweight (≥4.5 kg) was 1.17 (95%CI: 1.01-1.36). Such association was remarkably observed in pancreatic cancer, with an HR of 1.82 (95%CI: 1.26-2.64). No statistically significant association was observed between low birth weight and gastrointestinal cancers. Participants with high birthweight and high PRS had the highest risk of gastrointestinal cancer (HR: 2.95, 95%CI: 2.19-3.96). CONCLUSION: Our findings highlight that high birthweight is associated with a higher incidence of gastrointestinal cancer, especially for pancreatic cancer. Benefits would be obtained from birthweight control, particularly for individuals with a high genetic risk.KEY MESSAGESThe epidemiologic studies investigating the association of birthweight and genetic factors with gastrointestinal cancer remain scarce.This cohort study of 254,997 adults in the United Kingdom found an association of high birthweight with the incidence of gastrointestinal cancer, especially for pancreatic cancer, and also found that participants with high birthweight and high polygenic risk score had the highest risk of gastrointestinal cancer.Our data suggests a possible effect of in utero or early life exposures on adulthood gastrointestinal cancer, especially for those with a high genetic risk.


Subject(s)
Gastrointestinal Neoplasms , Pancreatic Neoplasms , Adult , Humans , Cohort Studies , Prospective Studies , Risk Factors , Birth Weight , Incidence , Gastrointestinal Neoplasms/epidemiology , Gastrointestinal Neoplasms/genetics , Pancreatic Neoplasms/epidemiology , Pancreatic Neoplasms/genetics
17.
Am J Respir Crit Care Med ; 207(2): 173-182, 2023 01 15.
Article in English | MEDLINE | ID: mdl-35943859

ABSTRACT

Rationale: The individual effects of early-life tobacco smoke exposure and its interactions with genetic factors on lung cancer in adulthood remain unclear. Objectives: To investigate the associations of early-life tobacco exposures as well as their interactions with polygenic risk scores (PRSs) with lung cancer incidence and mortality. Methods: A total of 432,831 participants from the UK Biobank study were included. We estimated the associations of in utero exposure to tobacco smoke, the age of smoking initiation and their interactions with PRSs with lung cancer incidence and mortality in adulthood using Cox proportional hazard models. Measurements and Main Results: Lung cancer incidence (hazard ratio [HR]: 1.59, 95% confidence interval [CI], 1.44-1.76) increased among participants with in utero tobacco exposure. Multivariable-adjusted HRs (with 95% CIs) of lung cancer incidence for smoking initiation in adulthood, adolescence, and childhood (versus never-smokers) were 6.10 (5.25-7.09), 9.56 (8.31-11.00), and 15.15 (12.90-17.79) (Ptrend < 0.001). Similar findings were observed in lung cancer mortality. Participants with high PRSs and in utero tobacco exposure (versus low PRSs participants without in utero exposure) had an HR of 2.35 for lung cancer incidence (95% CI, 1.97-2.80, Pinteraction = 0.089) and 2.43 for mortality (95% CI, 2.05-2.88, Pinteraction = 0.032). High PRSs with smoking initiation in childhood (versus never-smokers with low PRSs) had HRs of 18.71 for incidence (95% CI, 14.21-24.63, Pinteraction = 0.004) and 19.74 for mortality (95% CI, 14.98-26.01, Pinteraction = 0.033). Conclusions: In utero and childhood/adolescence exposure to tobacco smoke and its interaction with genetic factors may substantially increase the risks of lung cancer incidence and mortality in adulthood.


Subject(s)
Lung Neoplasms , Tobacco Smoke Pollution , Humans , Adolescent , Tobacco Smoke Pollution/adverse effects , Incidence , Nicotiana , Risk Factors , Lung Neoplasms/epidemiology , Lung Neoplasms/genetics
18.
Clin Gastroenterol Hepatol ; 21(3): 808-818, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35964896

ABSTRACT

BACKGROUND & AIMS: The screening yield and related cost of a risk-adapted screening approach compared with established screening strategies in population-based colorectal cancer (CRC) screening are not clear. METHODS: We randomly allocated 19,373 participants into 1 of the 3 screening arms in a 1:2:2 ratio: (1) one-time colonoscopy (n = 3883); (2) annual fecal immunochemical test (FIT) (n = 7793); (3) annual risk-adapted screening (n = 7697), in which, based on the risk-stratification score, high-risk participants were referred for colonoscopy and low-risk ones were referred for FIT. Three consecutive screening rounds were conducted for both the FIT and the risk-adapted screening arms. Follow-up to trace the health outcome for all the participants was conducted over the 3-year study period. The detection rate of advanced colorectal neoplasia (CRC and advanced precancerous lesions) was the main outcome. The trial was registered in the Chinese Clinical Trial Registry (number: ChiCTR1800015506). RESULTS: In the colonoscopy, FIT, and risk-adapted screening arms over 3 screening rounds, the participation rates were 42.4%, 99.3%, and 89.2%, respectively; the detection rates for advanced neoplasm (intention-to-treat analysis) were 2.76%, 2.17%, and 2.35%, respectively, with an odds ratio (OR)colonoscopy vs FIT of 1.27 (95% confidence interval [CI]: 0.99-1.63; P = .056), an ORcolonoscopy vsrisk-adapted screening of 1.17 (95% CI, 0.91-1.49; P = .218), and an ORrisk-adapted screeningvs FIT of 1.09 (95% CI, 0.88-1.35; P = .438); the numbers of colonoscopies needed to detect 1 advanced neoplasm were 15.4, 7.8, and 10.2, respectively; the costs for detecting 1 advanced neoplasm from a government perspective using package payment format were 6928 Chinese Yuan (CNY) ($1004), 5821 CNY ($844), and 6694 CNY ($970), respectively. CONCLUSIONS: The risk-adapted approach is a feasible and cost-favorable strategy for population-based CRC screening and therefore could complement the well-established one-time colonoscopy and annual repeated FIT screening strategies. (Chinese Clinical Trial Registry; ChiCTR1800015506).


Subject(s)
Colorectal Neoplasms , Early Detection of Cancer , Humans , Colonoscopy , Colorectal Neoplasms/diagnosis , Risk Factors , Mass Screening , Occult Blood , Feces
19.
Cancer Res ; 82(19): 3449-3456, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-35972351

ABSTRACT

Microorganisms are commonly detected in tumor tissues, and the species and abundance have been reported to affect cancer initiation, progression, and therapy. Host genetics have been associated with gut microbial abundances, while the relationships between genetic variants and the cancer microbiome still require systematic interrogation. Therefore, identification of cancer microbiome quantitative trait loci (mbQTL) across cancer types might elucidate the contributions of genetic variants to tumor development. Using genotype data from The Cancer Genome Atlas and microbial abundance levels from Kraken-derived data, we developed a computational pipeline to identify mbQTLs in 32 cancer types. This study systematically identified 38,660 mbQTLs across cancers, ranging 50 in endometrial carcinoma to 3,133 in thyroid carcinoma. Furthermore, a strong enrichment of mbQTLs was observed among transcription factor binding sites and chromatin regulatory elements, such as H3K27ac. Notably, mbQTLs were significantly enriched in cancer genome-wide association studies (GWAS) loci and explained an average of 2% for cancer heritability, indicating that mbQTLs could provide additional insights into cancer etiology. Correspondingly, 24,443 mbQTLs overlapping with GWAS linkage disequilibrium regions were identified. Survival analyses identified 318 mbQTLs associated with patient overall survival. Moreover, we uncovered 135,248 microbiome-immune infiltration associations and 166,603 microbiome-drug response associations that might provide clues for microbiome-based biomarkers. Finally, a user-friendly database, Cancer-mbQTL (http://canmbqtl.whu.edu.cn/#/), was constructed for users to browse, search, and download data of interest. This study provides a valuable resource for investigating the roles of genetics and microorganisms in human cancer. SIGNIFICANCE: This study provides insights into the host-microbiome interactions for multiple cancer types, which could help the research community understand the effects of inherited variants in tumorigenesis and development.


Subject(s)
Microbiota , Neoplasms , Chromatin , Genome-Wide Association Study , Humans , Microbiota/genetics , Neoplasms/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Transcription Factors/genetics
20.
Chin Med J (Engl) ; 135(11): 1348-1357, 2022 Jun 05.
Article in English | MEDLINE | ID: mdl-35830250

ABSTRACT

BACKGROUND: Pancreatic adenocarcinoma (PAAD) is an extremely lethal malignancy. Identification of the functional genes and genetic variants related to PAAD prognosis is important and challenging. Previously identified prognostic genes from several expression profile analyses were inconsistent. The regulatory genetic variants that affect PAAD prognosis were largely unknown. METHODS: Firstly, a meta-analysis was performed with seven published datasets to systematically explore the candidate prognostic genes for PAAD. Next, to identify the regulatory variants for those candidate genes, expression quantitative trait loci analysis was implemented with PAAD data resources from The Cancer Genome Atlas. Then, a two-stage association study in a total of 893 PAAD patients was conducted to interrogate the regulatory variants and find the prognostic locus. Finally, a series of biochemical experiments and phenotype assays were carried out to demonstrate the biological function of variation and genes in PAAD progression process. RESULTS: A total of 128 genes were identified associated with the PAAD prognosis in the meta-analysis. Fourteen regulatory loci in 12 of the 128 genes were discovered, among which, only rs4887783, the functional variant in the promoter of Ring Finger and WD Repeat Domain 3 ( RFWD3 ), presented significant association with PAAD prognosis in both stages of the population study. Dual-luciferase reporter and electrophoretic mobility shift assays demonstrated that rs4887783-G allele, which predicts the worse prognosis, enhanced the binding of transcript factor REST, thus elevating RFWD3 expression. Further phenotypic assays revealed that excess expression of RFWD3 promoted tumor cell migration without affecting their proliferation rate. RFWD3 was highly expressed in PAAD and might orchestrate the genes in the DNA repair process. CONCLUSIONS: RFWD3 and its regulatory variant are novel genetic factors for PAAD prognosis.


Subject(s)
Adenocarcinoma , Pancreatic Neoplasms , Adenocarcinoma/genetics , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Humans , Pancreatic Neoplasms/pathology , Prognosis , Quantitative Trait Loci/genetics , Ubiquitin-Protein Ligases/genetics , WD40 Repeats , Pancreatic Neoplasms
SELECTION OF CITATIONS
SEARCH DETAIL
...