Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
1.
J Mater Chem B ; 12(23): 5690-5698, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38757489

ABSTRACT

Tissue damage and cell death occurring during photothermal therapy (PTT) for tumors can induce an inflammatory response that is detrimental to tumor therapy. Herein, ultrathin Mo metallene nanosheets with a thickness of <5 nm prepared by liquid phase exfoliation were explored as functional hyperthermia agents for non-inflammatory ablation of tumors. The obtained Mo metallene nanosheets exhibited good photothermal conversion properties and significant reactive oxygen species (ROS) scavenging ability, thus achieving superior cancer cell ablation and anti-inflammatory effects in vitro. For in vivo experiments, 4T1 tumors were ablated while the inflammation-related cytokine levels did not obviously increase, demonstrating that the inflammatory response induced by PTT was inhibited by the anti-inflammatory properties of Mo metallene nanosheets. Moreover, Mo metallene nanosheets depicted good dispersibility and biocompatibility, beneficial for biomedical applications. This work introduces Mo metallenes as promising hyperthermia agents for non-inflammatory PTT of tumors.


Subject(s)
Molybdenum , Photothermal Therapy , Molybdenum/chemistry , Molybdenum/pharmacology , Animals , Mice , Humans , Reactive Oxygen Species/metabolism , Cell Survival/drug effects , Mice, Inbred BALB C , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Particle Size , Female , Cell Line, Tumor , Surface Properties , Nanostructures/chemistry
2.
ACS Appl Mater Interfaces ; 16(17): 21653-21664, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38644787

ABSTRACT

Analogous to thermal ablation techniques in clinical settings, cell necrosis induced during tumor photothermal therapy (PTT) can provoke an inflammatory response that is detrimental to the treatment of tumors. In this study, we employed a straightforward one-step liquid-phase reduction process to synthesize uniform RhRe nanozymes with an average hydrodynamic size of 41.7 nm for non-inflammatory photothermal therapy. The obtained RhRe nanozymes showed efficient near-infrared (NIR) light absorption for effective PTT, coupled with a remarkable capability to scavenge reactive oxygen species (ROS) for anti-inflammatory treatment. After laser irradiation, the 4T1 tumors were effectively ablated without obvious tumor recurrence within 14 days, along with no obvious increase in pro-inflammatory cytokine levels. Notably, these RhRe nanozymes demonstrated high biocompatibility with normal cells and tissues, both in vitro and in vivo, as evidenced by the lack of significant toxicity in female BALB/c mice treated with 10 mg/kg of RhRe nanozymes over a 14 day period. This research highlights RhRe alloy nanoparticles as bioactive nanozymes for non-inflammatory PTT in tumor therapy.


Subject(s)
Alloys , Mice, Inbred BALB C , Photothermal Therapy , Rhenium , Rhodium , Animals , Rhodium/chemistry , Rhodium/pharmacology , Mice , Alloys/chemistry , Alloys/pharmacology , Female , Rhenium/chemistry , Rhenium/pharmacology , Cell Line, Tumor , Humans , Reactive Oxygen Species/metabolism
3.
Adv Healthc Mater ; : e2400048, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38466315

ABSTRACT

Polydopamine nanomaterials have emerged as one of the most popular organic materials for the management of oxidative stress-mediated inflammatory diseases. However, their current anti-inflammatory ability is still unsatisfactory because of limited phenolic hydroxyl groups, and oxidation reaction-medicated reactive oxygen and nitrogen species (RONS) scavenging. Herein, via fusing dimension engineering and surface charge engineering, 2D cationic polydopamine nanosheets (PDA NSs) capable of scavenging multiple danger signals to enhance anti-inflammatory capability are reported. Compared with conventional spherical polydopamine nanoparticles, 2D PDA NSs exhibit three- to fourfold enhancement in RONS scavenging capability, which should be attributed to high specific surface area and abundant phenol groups of 2D ultrathin structure. To further enhance the anti-inflammatory ability, polylysine molecules are absorbed on the surface of PDA NSs to endow the scavenging capability of cell-free DNA (cfDNA), another typical inflammatory factor to exacerbate the pathogenesis of inflammation. Molecular mechanisms reveal that cationic PDA NSs can concurrently activate Keap1-Nrf2 and block TLR9 signaling pathway, achieving synergistical inflammation inhibition. As a proof of concept, cationic PDA NSs with RONS and cfDNA dual-scavenging capability effectively alleviate the inflammatory bowel disease in both delayed and prophylactic models, much better than the clinical drug 5-aminosalicylic acid.

4.
Adv Healthc Mater ; 13(4): e2302576, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37897434

ABSTRACT

Intestinal commensal microbiota dysbiosis and immune dysfunction are significant exacerbating factors in inflammatory bowel disease (IBD). To address these problems, Pluronic F-127-coated tungsten diselenide (WSe2 @F127) nanozymes are developed by simple liquid-phase exfoliation. The abundant valence transitions of elemental selenium (Se2- /Se4+ ) and tungsten (W4+ /W6+ ) enable the obtained WSe2 @F127 nanozymes to eliminate reactive oxygen/nitrogen species. In addition, the released tungsten ions are capable of inhibiting the proliferation of Escherichia coli. In a model of dextran sodium sulfate-induced colitis, WSe2 @F127 nanozymes modulate the gut microbiota by increasing the abundance of bacteria S24-7 and significantly reducing the abundance of Enterobacteriaceae. Moreover, WSe2 @F127 nanozymes inhibit T-cell differentiation and improve intestinal immune barrier function in a model of Crohn's disease. The WSe2 @F127 nanozymes effectively alleviate IBD by reducing oxidative stress damage, modulating intestinal microbial populations, and remodeling the immune barrier.


Subject(s)
Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Polyethylenes , Polypropylenes , Animals , Mice , Tungsten/pharmacology , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/microbiology , Escherichia coli , Reactive Oxygen Species , Cell Differentiation , Disease Models, Animal , Mice, Inbred C57BL
5.
ACS Nano ; 17(15): 14893-14903, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37466081

ABSTRACT

Elemental sulfur is the oldest known antimicrobial agent. However, conventional sulfur in the clinic suffers from poor aqueous solubility and limited antibacterial activity, greatly hindering its practical use. Herein, we report a reform strategy coupling dimension engineering with chirality transfer to convert conventional 3D sulfur particles into chiral 2D sulfur nanosheets (S-NSs), which exhibit 50-fold improvement of antibacterial capability and dual-selective inhibition against Gram-positive bacteria. Benefiting from the inherent selectivity of S-NSs and chirality selectivity from decorated d-histidine, the obtained chiral S-NSs are proven to precisely kill Gram-positive drug-resistant bacteria, while no obvious bacterial inhibition is observed for Gram-negative bacteria. Mechanism studies reveal that S-NSs produce numerous reactive oxygen specipoes and hydrogen sulfide after incubation with bacteria, thus causing bacterial membrane destruction, respiratory chain damage, and ATP production inhibition. Upon spraying chiral S-NSs dispersions onto MRSA-infected wounds, the skin healing process was greatly accelerated in 8 days due to metabolism inhibition and oxidative damage of bacteria, indicating the excellent treatment efficiency of MRSA-infected wounds. This work converts the traditional well-known sulfur into modern antibacterial agents with a superior Gram-selectivity bactericidal capability.


Subject(s)
Anti-Infective Agents , Anti-Bacterial Agents/pharmacology , Gram-Positive Bacteria , Bacteria , Gram-Negative Bacteria
6.
J Nanobiotechnology ; 21(1): 203, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37370105

ABSTRACT

Ferroptosis, a form of regulated cell death induced by excessive accumulation of reactive oxygen species and lipid peroxidation, has recently attracted extensive attention due to its ability to effectively suppress tumors and overcome drug resistance. Unlike previously reported metal nanomaterials that induce ferroptosis via the Fenton reaction, arsenene nanosheets can effectively deplete intracellular glutathione and then induce ferroptosis by inhibiting glutathione peroxidase 4. In this study, we designed target-modified arsenene nanosheets loaded with cisplatin (Her2-ANs@CDDP), which are capable of selective uptake by tumor cells. Her2-ANs@CDDP promotes both apoptosis and ferroptosis through a reciprocal cascade reaction between cisplatin and the carrier, respectively, and we demonstrate that it can significantly inhibit the activity of drug-resistant cells. Arsenene nanosheets kill drug-resistant tumor cells by inducing ferroptosis and restoring the sensitivity of drug-resistant cells to cisplatin. Cisplatin-loaded arsenene nanosheets can be prepared simply, and exert synergistic effects that overcome drug resistance. They show great potential for applications in the clinical treatment of chemotherapy-insensitive osteosarcoma, expanding the uses of arsenic in the treatment of solid tumors.


Subject(s)
Antineoplastic Agents , Bone Neoplasms , Ferroptosis , Osteosarcoma , Humans , Cisplatin/pharmacology , Cisplatin/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Osteosarcoma/drug therapy , Reactive Oxygen Species/metabolism , Bone Neoplasms/drug therapy , Glutathione/metabolism , Cell Line, Tumor
7.
Chem Soc Rev ; 52(8): 2833-2865, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37016963

ABSTRACT

Metallenes, atomically thin-layered materials composed of coordination-deficient metal atoms, have emerged as a new category of two-dimensional materials. Metallenes exhibit exciting properties with a fusion of atom economy, ultrathin structure, photonic properties, and catalytic activity, which make them intriguing for a wide range of applications in biomedicine. The development of biomedical applications of metallenes is in its infancy yet fast-growing. In this review, after a brief introduction of the definition, structures, properties, and classification of metallenes, we outline two common synthesis strategies and identify their shortcomings. Then, we comprehensively discuss the biological effects of metallenes, such as nano-biointeractions and signaling pathway regulation. We also highlight their recent advances in biomedical applications, including antitumor, biosensing, bioimaging, antibacterial, and anti-inflammation. Finally, we provide personal perspectives on remaining challenges and future opportunities for the biomedical applications of metallenes.


Subject(s)
Biosensing Techniques , Biosensing Techniques/methods , Metals/chemistry , Anti-Bacterial Agents
8.
Adv Healthc Mater ; 12(17): e2202947, 2023 07.
Article in English | MEDLINE | ID: mdl-36829272

ABSTRACT

Microwave ablation (MWA) is a novel treatment modality that can lead to the death of tumor cells by heating the ions and polar molecules in the tissue through high-speed vibration and friction. However, the single hyperthermia is not sufficient to completely inhibit tumor growth. Herein, a thermodynamic cancer-therapeutic modality has been fabricated which could be able to overcome hypoxia's limitations in the tumor microenvironment. Using thermo-sensitive liposomes (TSLs) and oxygen-independent radical generators (2,2'-azobis[2-(2-imidazolin-2-yl)propane]dihydrochloride [AIPH]), a nano-drug delivery system denoted as ATSL is developed for efficient sequential cancer treatment. Under the microwave field, the temperature rise of local tissue could not only lead to the damage of tumor cells but also induce the release of AIPH encapsulated in ATSL to produce free radicals, eliciting tumor cell death. In addition, the ATSL developed here would avoid the side effects caused by the uncontrolled diffusion of AIPH to normal tissues. The ATSLs have shown excellent therapeutic effects both in vitro and in vivo, suggesting its highly promising potential for clinic.


Subject(s)
Liposomes , Neoplasms , Humans , Liposomes/chemistry , Microwaves , Free Radicals/chemistry , Neoplasms/drug therapy , Neoplasms/pathology , Reactive Oxygen Species , Oxygen , Cell Line, Tumor , Tumor Microenvironment
9.
Adv Healthc Mater ; 12(12): e2203160, 2023 05.
Article in English | MEDLINE | ID: mdl-36651877

ABSTRACT

The structural disruption of mechanical barrier and dysfunction of immune barrier in intestinal, are important factors, that aggravate inflammatory bowel disease (IBD). To tackle this challenge, a multifunctional nanozyme capable of scavenging reactive oxygen species (ROS) and inhibiting ferroptosis or T cells differentiation for IBD therapy is here reported. In this work, zero-valence selenium-enriched Prussian blue nanozymes (Se-HMPB nanozymes) are prepared via the hard template method. PB nanozymes with multi-enzyme activities can effectively scavenge various ROS in inflammatory tissues. Meanwhile, the presence of selenium element endows the glutathione peroxidase activity of Se-HMPB nanozymes, which can inhibit ferroptosis and reverse the lipid peroxidation of intestinal epithelial cells to protect the intestinal mechanical barrier in ulcerative colitis (UC) model. In addition, selenium supplementation can realize efficient inhibition on the differentiation of T cells in Crohn's disease (CD) model, regulating the intestinal immune barrier. Thus, the Se-HMPB nanozymes reconstructed intestinal barrier via inhibiting ferroptosis and T cells differentiation in UC and CD models, depicting great potential to alleviate IBD.


Subject(s)
Colitis, Ulcerative , Ferroptosis , Inflammatory Bowel Diseases , Selenium , Humans , Selenium/pharmacology , Reactive Oxygen Species , Inflammatory Bowel Diseases/drug therapy , Cell Differentiation
10.
Adv Healthc Mater ; 11(21): e2201023, 2022 11.
Article in English | MEDLINE | ID: mdl-36058004

ABSTRACT

The intimate relationship between bacteria and tumors has triggered a lot of activities in the development and design of bioactive materials to concurrently respond to antitumor and antibacterial demands. Herein, a pseudocatalytic hydrogel (AM-I@Agar) with intrinsic antibacterial and photothermal activities, synthesized by incorporating prefabricated amylose-iodine nanoparticles into low-melting-point agarose hydrogel, is explored as a bioactive agent for local treatment of subcutaneous abscesses and breast tumors. The AM-I@Agar hydrogel depicts the ability of pseudocatalytic O2 generation from H2 O2 to alleviate hypoxia. Meanwhile, the AM-I@Agar hydrogel exhibits temperature self-regulation features, beneficial for avoiding thermal injury during photothermal therapy owing to thermochromic properties. Upon local injection into a subcutaneous abscess, methicillin-resistant Staphylococcus aureus is effectively eliminated by the AM-I@Agar hydrogel, and complete skin recovery is achieved in 8 d, demonstrating much better antibacterial effects compared with penicillin, a small-molecule antibiotic. AM-I/5-FU@Agar hydrogel, obtained after loading 5-fluorouracil (5-FU), significantly inhibits tumors in both normal 4T1 tumor-bearing mice and MRSA-infected 4T1 tumor-bearing mice models via a synergistic photothermal-chemo effect, and shows treatment efficiency superior to that achieved with photothermal therapy or 5-FU alone. This work provides a concept for the design and development of bioactive agents for potential management of bacteria-associated cancer.


Subject(s)
Hyperthermia, Induced , Methicillin-Resistant Staphylococcus aureus , Mice , Animals , Hydrogels/pharmacology , Phototherapy , Abscess , Agar , Anti-Bacterial Agents/pharmacology , Fluorouracil
11.
ACS Nano ; 16(9): 15026-15041, 2022 09 27.
Article in English | MEDLINE | ID: mdl-36037406

ABSTRACT

The exciting success of NBTXR3 in the clinic has triggered a tumult of activities in the design and development of hafnium-based nanoparticles. However, due to the concerns of nondegradation and limited functions, the biomedical applications of Hf-based nanoparticles mainly focus on tumors. Herein, tannic acid capped hafnium disulfide (HfS2@TA) nanosheets, a 2D atomic crystal of hafnium-based materials prepared by liquid-phase exfoliation, were explored as high-performance anti-inflammatory nanoagents for the targeted therapy of inflammatory bowel disease (IBD). Benefiting from the transformation of the S2-/S6+ valence state and huge specific surface area, the obtained HfS2@TA nanosheets were not only capable of effectively eliminating reactive oxygen species/reactive nitrogen species and downregulating pro-inflammatory factors but also could be excreted via kidney and hepatointestinal systems. Unexpectedly, HfS2@TA maintained excellent targeting capability to an inflamed colon even in the harsh digestive tract environment, mainly attributed to the electrostatic interactions between negatively charged tannic acid and positively charged inflamed epithelium. Encouragingly, upon oral or intravenous administration, HfS2@TA quickly inhibited inflammation and repaired the intestinal mucosa barrier in both dextran sodium sulfate and 2,4,6-trinitrobenzenesulfonic acid induced IBD models. This work demonstrated that ultrathin HfS2@TA atomic crystals with enhanced colon accumulation were promising for the targeted therapy of IBD.


Subject(s)
Hafnium , Inflammatory Bowel Diseases , Anti-Inflammatory Agents/therapeutic use , Colon/metabolism , Dextran Sulfate/pharmacology , Dextran Sulfate/therapeutic use , Disulfides/pharmacology , Hafnium/pharmacology , Humans , Inflammatory Bowel Diseases/drug therapy , Reactive Nitrogen Species , Reactive Oxygen Species/metabolism , Tannins/pharmacology , Tannins/therapeutic use , Trinitrobenzenesulfonic Acid/pharmacology , Trinitrobenzenesulfonic Acid/therapeutic use
12.
J Nanobiotechnology ; 20(1): 215, 2022 May 06.
Article in English | MEDLINE | ID: mdl-35524259

ABSTRACT

Despite attracting increasing attention in clinic, non-invasive high-intensity focused ultrasound (HIFU) surgery still commonly suffers from tumor recurrence and even matastasis due to the generation of thermo-resistance in non-apoptotic tumor cells and adverse therapy-induced inflammation with enhanced secretion of growth factors in irradiated region. In this work, inspired by the intrinsic property that the expression of thermo-resistant heat shock proteins (HSPs) is highly dependent with adenosine triphosphate (ATP), dual-functionalized diclofenac (DC) with anti-inflammation and glycolysis-inhibition abilities was successfully co-encapsulated with phase-change dl-menthol (DLM) in poly(lactic-co-glycolic acid) nanoparticles (DC/DLM@PLGA NPs) to realize improved HIFU surgery without causing adverse inflammation. Both in vitro and in vivo studies demonstrated the great potential of DC/DLM@PLGA NPs for serving as an efficient synergistic agent for HIFU surgery, which can not only amplify HIFU ablation efficacy through DLM vaporization-induced energy deposition but also simultaneously sensitize tumor cells to hyperthermia by glycolysis inhibition as well as diminished inflammation. Thus, our study provides an efficient strategy for simultaneously improving the curative efficiency and diminishing the harmful inflammatory responses of clinical HIFU surgery.


Subject(s)
Diclofenac , High-Intensity Focused Ultrasound Ablation , Diclofenac/pharmacology , Diclofenac/therapeutic use , Glycolysis , Humans , Inflammation/drug therapy , Menthol
13.
Mater Horiz ; 8(8): 2216-2229, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34846426

ABSTRACT

Ferroptosis, a newly recognized form of non-apoptotic cell death, has recently been introduced for effective cancer therapy. The reported ferroptosis-inducing nanomaterials mainly consisted of metal-based components. Herein, we designed an inorganic metal-free nanoplatform, PSMA-targeted arsenic nanosheets (PMANs), which simultaneously increased glutathione (GSH) consumption, suppressed solute carrier family 7 member 11 (SLC7A11) and glutathione-dependent peroxidase 4 (GPX4) expression, and promoted the generation of reactive oxygen species (ROS) and lipid peroxides (LPO). In addition, owing to the large surface area, PMANs efficiently transported doxorubicin (DOX) to prostate cancer for synergistic therapy. Surprisingly, we found that PMANs could sensitize prostate cancer cells to DOX through downregulating the expression of ataxia telangiectasia mutated (ATM), which further augmented the GPX4 downregulation-mediated ferroptotic tumoricidal effect. Given that arsenic trioxide has been routinely and successfully used in the clinical treatment of leukemia for a long time, we anticipate that PMANs will offer a promising strategy for prostate cancer therapy.


Subject(s)
Arsenic , Ataxia Telangiectasia , Ferroptosis , Prostatic Neoplasms , Arsenic/metabolism , Ataxia Telangiectasia Mutated Proteins/genetics , Glutathione/metabolism , Humans , Male , Prostatic Neoplasms/drug therapy
14.
ACS Appl Mater Interfaces ; 13(39): 46343-46352, 2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34558285

ABSTRACT

Indium, a low melting point metal, is well-known for constructing eutectic gallium-indium liquid metal. However, unlike liquid metal nanoparticles, the biomedical applications of metallic indium nanoparticles (In NPs) remain in their infancy. Herein, an ultrasound-assisted liquid-reduction synthesis strategy was developed to prepare PEGylated In NPs, which were then used as a high-performance contrast agent for enhancing multiwavelength photoacoustic imaging and second near-infrared (NIR-II) photothermal therapy of the 4T1 breast tumor. The obtained In NPs depicted remarkable optical absorption from the first near-infrared (NIR-I) to NIR-II region and a high photothermal conversion efficiency of 41.3% at 1064 nm, higher than the majority of conventional NIR-II photothermal agents. Upon injection into the tumor, the photoacoustic intensities of the tumor section post-injection were obviously increased by 2.59-, 2.62-, and 4.27-fold of those of pre-injection by using excitation wavelengths of 750, 808, and 970 nm, respectively, depicting an excellent multiwavelength contrast capability of photoacoustic imaging. In addition, efficient ablation of the 4T1 tumor was achieved through the photothermal performance of PEGylated In NPs under NIR-II laser irradiation. Importantly, as the widely used element in the clinic, In NPs were highly biocompatible in vitro and in vivo. Therefore, this work pioneered the biomedical applications of PEGylated In NPs for cancer diagnosis and treatment.


Subject(s)
Antineoplastic Agents/therapeutic use , Contrast Media/therapeutic use , Metal Nanoparticles/therapeutic use , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/radiation effects , Antineoplastic Agents/toxicity , Cell Line, Tumor , Combined Modality Therapy/methods , Contrast Media/chemistry , Contrast Media/radiation effects , Contrast Media/toxicity , Human Umbilical Vein Endothelial Cells , Humans , Indium/chemistry , Indium/radiation effects , Indium/therapeutic use , Indium/toxicity , Infrared Rays , Metal Nanoparticles/chemistry , Metal Nanoparticles/radiation effects , Metal Nanoparticles/toxicity , Mice, Inbred BALB C , Photoacoustic Techniques/methods , Photothermal Therapy/methods , Polyethylene Glycols/chemistry , Polyethylene Glycols/toxicity
15.
Adv Healthc Mater ; 10(18): e2100722, 2021 09.
Article in English | MEDLINE | ID: mdl-34165889

ABSTRACT

Iodophor (povidone-iodine) has been widely used for antibacterial applications in the clinic. Yet, limited progress in the field of iodine-based bactericides has been achieved since the invention of iodophor. Herein, a blue polyvinyl alcohol-iodine (PAI) complex-based antibacterial hydrogel is explored as a new generation of biocompatible iodine-based bactericides. The obtained PAI hydrogel maintains laser triggered liquefaction, thermochromic, and photothermal features for highly efficient elimination of bacteria. In vitro antibacterial test reveals that the relative bacteria viabilities of Escherichia coli (E.coli) and methicillin-resistant Staphylococcus aureus (MRSA) incubated with PAI hydrogel are only 8% and 3.8%, respectively. Upon single injection of the PAI hydrogel, MRSA-infected open wounds can be efficiently healed in only 5 days, and the healing speed is further accelerated by laser irradiation due to the dynamic interaction between iodine and polyvinyl alcohol, causing up to ∼29% of wound area being closed on day 1. In addition, a safe threshold temperature of skin scald (∼45 °C) emerges for PAI hydrogels because of thermochromic properties, avoiding thermal injuries during irradiation. In addition, no observed toxicity or skin irritation is observed for the PAI hydrogel. This work expands the category of iodine-based bactericides for safe and controllable management of infected wounds.


Subject(s)
Iodine , Methicillin-Resistant Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Hydrogels/pharmacology , Polyvinyl Alcohol , Temperature , Wound Healing
16.
ACS Nano ; 15(7): 11428-11440, 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34152125

ABSTRACT

Fenton-like reactions driven by manganese-based nanostructures have been widely applied in cancer treatment owing to the intrinsic physiochemical properties of these nanostructures and their improved sensitivity to the tumor microenvironment. In this work, ZnxMn1-xS@polydopamine composites incorporating alloyed ZnxMn1-xS and polydopamine (PDA) were constructed, in which the Fenton-like reactions driven by Mn ions can be tuned by a controllable release of Mn ions in vitro and in vivo. As a result, the ZnxMn1-xS@PDA exhibited good biocompatibility with normal cells but was specifically toxic to cancer cells. In addition, the shell thickness of PDA was carefully investigated to obtain excellent specific toxicity to cancer cells and promote synergistic chemodynamic and photothermal therapies. Overall, this work highlights an alternative strategy for fabricating high-performance, multifunctional composite nanostructures for a combined cancer treatment.


Subject(s)
Nanoparticles , Nanospheres , Neoplasms , Humans , Nanospheres/chemistry , Polymers/chemistry , Neoplasms/therapy , Glutathione , Zinc , Nanoparticles/chemistry , Cell Line, Tumor , Tumor Microenvironment
17.
J Mater Chem B ; 9(15): 3317-3325, 2021 04 21.
Article in English | MEDLINE | ID: mdl-33666636

ABSTRACT

Multifunctional contrast-enhanced agents suitable for application in surgical navigation by taking advantage of the merits of their diverse imaging modalities at different surgical stages are highly sought-after. Herein, an amphipathic polymer composed of aggregation-induced emission fluorogens (AIEgens) and Gd3+ chelates was successfully synthesized and assembled into ultrasound responsive microbubbles (AIE-Gd MBs) to realize potential tri-modal contrast-enhanced ultrasound (US) imaging, magnetic resonance imaging (MRI), and AIEgen-based fluorescence imaging (FI) during the perioperative period. Through ultrasound targeted microbubble destruction (UTMD) and cavitation effect, the as-prepared AIE-Gd MBs went through a MBs-to-nanoparticles (NPs) conversion, which not only resulted in targeted accumulation in tumor tissues but also led to stronger fluorescence being exhibited due to the more aggregated AIE-Gd molecules in the NPs. As a proof-of-concept, our work proposes a strategy of US-lit-up AIEgens in tumors which could offer a simple and powerful tool for surgical navigation in the future.


Subject(s)
Contrast Media/chemistry , Fluorescent Dyes/chemistry , Optical Imaging , Polymers/chemistry , Surgery, Computer-Assisted , Ultrasonography , Contrast Media/chemical synthesis , Fluorescent Dyes/chemical synthesis , Humans
18.
Sci Bull (Beijing) ; 66(2): 147-157, 2021 Jan 30.
Article in English | MEDLINE | ID: mdl-36654222

ABSTRACT

We report that atomically thin two-dimensional silicon quantum sheets (2D Si QSs), prepared by a scalable approach coupling chemical delithiation and cryo-assisted exfoliation, can serve as a high-performance brain photonic nanoagent for orthotopic glioma theranostics. With the lateral size of approximately 14.0 nm and thickness of about 1.6 nm, tiny Si QSs possess high mass extinction coefficient of 27.5 L g-1 cm-1 and photothermal conversion efficiency of 47.2% at 808 nm, respectively, concurrently contributing to the best photothermal performance among the reported 2D mono-elemental materials (Xenes). More importantly, Si QSs with low toxicity maintain the trade-off between stability and degradability, paving the way for practical clinical translation in consideration of both storage and action of nanoagents. In vitro Transwell filter experiment reveals that Si QSs could effectively go across the bEnd.3 cells monolayer. Upon the intravenous injection of Si QSs, orthotopic brain tumors are effectively inhibited under the precise guidance of photoacoustic imaging, and the survival lifetime of brain tumor-bearing mice is increased by two fold. Atomically thin Si QSs with strong light-harvesting capability are expected to provide an effective and robust 2D photonic nanoplatform for the management of brain diseases.

19.
Nanotechnology ; 31(46): 465102, 2020 Nov 13.
Article in English | MEDLINE | ID: mdl-32857735

ABSTRACT

The biological effects of nanoparticles are of great importance for the in-depth understanding of safety issues in biomedical applications. Induction of autophagy is a cellular response after nanoparticle exposure. Bismuth sulfide nanoparticles (Bi2S3 NPs) are often used as a CT contrast agent because of their excellent photoelectric conversion ability. Yet there has been no previous detailed study other than a cell toxicity assessment. In this study, three types of Bi2S3 NPs with different shapes (Bi2S3 nano rods (BSNR), hollow microsphere Bi2S3 NPs (BSHS) and urchin-like hollow microsphere Bi2S3 NPs (ULBSHS)) were used to evaluatecytotoxicity, autophagy induction, cell migration and invasion in human hepatocellular carcinoma cells (HepG2). Results showed that all three Bi2S3 NPs lead to blockage in autophagic flux, causing p62 protein accumulation. The cell death caused by these Bi2S3 NPs is proved to be autophagy related, rather than related to apoptosis. Moreover, Bi2S3 NPs can reduce the migration and invasion in HepG2 cells in an autophagy-dependent manner. ULBSHS is the most cytotoxic among three Bi2S3 NPs and has the best tumor metastasis suppression. These results demonstrated that, even with relatively low toxicity of Bi2S3 NPs, autophagy blockage may still substantially influence cell fate and thus significantly impact their biomedical applications, and that surface topography is a key factor regulating their biological response.


Subject(s)
Autophagy/drug effects , Bismuth/adverse effects , Cell Movement/drug effects , Cytotoxins/adverse effects , Nanoparticles/adverse effects , Sulfides/adverse effects , Bismuth/chemistry , Bismuth/toxicity , Cytotoxins/chemistry , Cytotoxins/toxicity , Hep G2 Cells , Humans , Nanoparticles/chemistry , Nanoparticles/toxicity , Sulfides/chemistry , Sulfides/toxicity
20.
iScience ; 23(7): 101281, 2020 Jul 24.
Article in English | MEDLINE | ID: mdl-32622263

ABSTRACT

Bacterial infections caused by pathogens have always been a thorny issue that threatens human health, and there is urgent need to develop a new generation of antimicrobial nano-agents and treatments. Herein, biodegradable nickel disulfide (ND) nanozymes as excellent antibacterial agents that integrate excellent photothermal performance, nano-catalysis property, and glutathione (GSH)-depleting function have been successfully constructed. The ND nanozymes can effectively catalyze the decomposition of H2O2 to produce ⋅OH, and the hyperthermia of ND nanozymes generated by photothermal therapy (PTT) can further increase its catalytic activity, which provides rapid and effective bacterial killing effect compared with nano-catalytic treatment or PTT alone. Surprisingly, the ND nanozymes have the ability of GSH consumption, thus enhancing its sterilization effect. Moreover, the ND nanozymes are biodegradable nanomaterials that do not cause any significant toxicity in vivo. Collectively, the ND nanozymes with excellent photothermal performance, catalytic activity, and GSH-depleting function are used for high-efficiency sterilization.

SELECTION OF CITATIONS
SEARCH DETAIL
...