Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Eng Lett ; 14(2): 187-197, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38374911

ABSTRACT

Thyroid nodules are common, and patients with potential malignant lesions are usually diagnosed using ultrasound imaging to determine further treatment options. This study aims to propose a computer-aided diagnosis method for benign and malignant classification of thyroid nodules in ultrasound images. We propose a novel multi-task framework that combines the advantages of dense connectivity, Squeeze-and-Excitation (SE) connectivity, and Atrous Spatial Pyramid Pooling (ASPP) layer to enhance feature extraction. The Dense connectivity is used to optimize feature reuse, the SE connectivity to optimize feature weights, the ASPP layer to fuse feature information, and a multi-task learning framework to adjust the attention of the network. We evaluate our model using a 10-fold cross-validation approach based on our established Thyroid dataset. We assess the performance of our method using six average metrics: accuracy, sensitivity, specificity, positive predictive value, negative predictive value, and AUC, which are 93.49, 95.54, 91.52, 91.63, 95.47, and 96.84%, respectively. Our proposed method outperforms other classification networks in all metrics, achieving optimal performance. We propose a multi-task model, DSMA-Net, for distinguishing thyroid nodules in ultrasound images. This method can further enhance the diagnostic ability of doctors for suspected cancer patients and holds promise for clinical applications.

2.
Neuroimage ; 276: 120209, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37269957

ABSTRACT

Electroencephalography (EEG)-based brain-computer interfaces (BCIs) pose a challenge for decoding due to their low spatial resolution and signal-to-noise ratio. Typically, EEG-based recognition of activities and states involves the use of prior neuroscience knowledge to generate quantitative EEG features, which may limit BCI performance. Although neural network-based methods can effectively extract features, they often encounter issues such as poor generalization across datasets, high predicting volatility, and low model interpretability. To address these limitations, we propose a novel lightweight multi-dimensional attention network, called LMDA-Net. By incorporating two novel attention modules designed specifically for EEG signals, the channel attention module and the depth attention module, LMDA-Net is able to effectively integrate features from multiple dimensions, resulting in improved classification performance across various BCI tasks. LMDA-Net was evaluated on four high-impact public datasets, including motor imagery (MI) and P300-Speller, and was compared with other representative models. The experimental results demonstrate that LMDA-Net outperforms other representative methods in terms of classification accuracy and predicting volatility, achieving the highest accuracy in all datasets within 300 training epochs. Ablation experiments further confirm the effectiveness of the channel attention module and the depth attention module. To facilitate an in-depth understanding of the features extracted by LMDA-Net, we propose class-specific neural network feature interpretability algorithms that are suitable for evoked responses and endogenous activities. By mapping the output of the specific layer of LMDA-Net to the time or spatial domain through class activation maps, the resulting feature visualizations can provide interpretable analysis and establish connections with EEG time-spatial analysis in neuroscience. In summary, LMDA-Net shows great potential as a general decoding model for various EEG tasks.


Subject(s)
Brain-Computer Interfaces , Humans , Neural Networks, Computer , Algorithms , Electroencephalography/methods , Generalization, Psychological , Imagination/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...