Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38918298

ABSTRACT

Azotobacter chroococcum and Bacillus subtilis were selected as fermentation strains, and biogas residue after anaerobic digestion of kitchen waste and residual sludge was used as fermentation substrate. A single factor optimization test was used to optimize the solid-state fermentation parameters of biogas residue with the number of viable bacteria and the number of spores as indexes. The results showed that the optimum inoculation conditions involved the following: 55% initial moisture content, 15% initial inoculation amount, 30 ℃, and 1:1 initial inoculation ratio for 13 days. Pot experiment showed that the prepared three kinds of bacterial fertilizers could not only effectively promote the growth of white clover, improve the composition of soil nutrients, but also change the structure of soil bacterial community, which is of great significance to the health of soil ecosystem in white clover.

2.
Plants (Basel) ; 11(17)2022 Aug 27.
Article in English | MEDLINE | ID: mdl-36079607

ABSTRACT

The amount of atmospheric nitrogen-containing aerosols has increased dramatically due to the globally rising levels of nitrogen from fertilization and atmospheric deposition. Although the balance of carbon and nitrogen in plants is a crucial component of physiological and biochemical indexes and plays a key role in adaptive regulation, our understanding of how nitrogen-containing aerosols affect this remains limited; in particular, regarding the associated mechanisms. Using a fumigation particle generator, we generated ammonium nitrate solution (in four concentrations of 0, 15, 30, 60 kg N hm-2 year-1) into droplets, in 90% of which the diameters were less than 2.5 µm, in the range of 0.35-4 µm, and fumigated Iris germanica L. and Portulaca grandiflora Hook. for 30 days in April and August. We found that the weight percentage of nitrogen in the upper epidermis, mesophyll tissue, and bulk of leaves decreased significantly with the N addition rate, which caused a decrease of carbon:nitrogen ratio, due to the enhanced net photosynthetic rate. Compared with Portulaca grandiflora Hook., Iris germanica L. responded more significantly to the disturbance of N addition, resulting in a decrease in the weight percentage of nitrogen in the roots, due to a lower nitrogen use efficiency. In addition, the superoxide dismutase activity of the two plants was inhibited with a higher concentration of nitrogen sol; a reduction of superoxide dismutase activity in plants means that the resistance of plants to various environmental stresses is reduced, and this decrease in superoxide dismutase activity may be related to ROS signaling. The results suggest that inorganic nitrogen-containing aerosols caused excessive stress to plants, especially for Iris germanica L.

SELECTION OF CITATIONS
SEARCH DETAIL
...