Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 621
Filter
1.
Int J Biol Macromol ; : 132536, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38777021

ABSTRACT

The enhancement of antimicrobial wound dressings is of utmost importance in light of the escalating risk of antibiotic resistance caused by excessive antibiotic usage. Conventional antimicrobial materials eradicate pathogenic bacteria while impeding the proliferation of beneficial bacteria during the management of wound infections, thereby disturbing the equilibrium of the skin micro-ecosystem and engendering recurrent cutaneous complications. Lactobacillus rhamnosus (L.rha) is a probiotic that can inhibit the growth of certain pathogenic bacteria by secreting a large number of metabolites. In this paper, we synthesized a cross-linker with a boric acid molecule (SPBA) from succinic acid and 4-(bromomethyl)phenylboronic acid, which formed a boric acid ester bond with a diol on the natural polysaccharide sodium alginate (SA), and obtained a pH/reactive oxygen species (ROS) dual-responsive hydrogel (SA-SPBA) for loading L.rha to treat wound infections. The SA-SPBA@L.rha hydrogel improves the survival of L.rha during storage and has good injectability as well as self-healing properties. The hydrogel showed good biocompatibility, the antimicrobial effect increases in a dose-dependent manner, and it has a certain antioxidant and anti-inflammatory capacity, accelerating wound repair. The use of SA-SPBA@L.rha hydrogel provides a safe and effective strategy for the repair of skin wound infections.

2.
Microbiol Spectr ; : e0412023, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38785439

ABSTRACT

In this study, we investigated the prevalence of Bartonella in deer from Qilian County, Qinghai Province, China. Blood samples were collected from 69 red deer, 40 white-lipped deer, and 27 sika deer. The detection of Bartonella spp. has been conducted. The overall prevalence of Bartonella was 33.6% (46/135). Species-specific prevalence was 50.72% in red deer (35/69), 20.00% in white-lipped deer (8/40), and 11.11% in sika deer (3/27). There were significant differences in the prevalence rates among the different species of deer. The amplicon sequence comparison revealed a high homology of the ruminant-associated Bartonella spp. Nanopore sequencing further confirmed the results. Bartonella reads were presented in each of the qPCR-positive samples. Phylogenetic analysis indicated that the Bartonella sequences detected in deer blood were closely related to ruminant-borne Bartonella spp. In summary, we reported the Bartonella prevalence of different deer species in Qinghai, and there were at least one species of ruminant-associated Bartonella, B. schoenbuchensis. IMPORTANCE: This is the first report about Bartonella infections in the deer population from China. We found that there were two species of Bartonella and an unidentified species of Bartonella among the unculturing strains carried by these deer populations. We first used Nanopore sequencing to detect Bartonella from deer blood samples and indicated that Nanopore sequencing is beneficial to detect pathogens due to its advantage of real-time and high sensitivity.

3.
Zool Res ; 45(3): 551-566, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38757223

ABSTRACT

Hepatocellular carcinoma (HCC), a prevalent solid carcinoma of significant concern, is an aggressive and often fatal disease with increasing global incidence rates and poor therapeutic outcomes. The etiology and pathological progression of non-alcoholic steatohepatitis (NASH)-related HCC is multifactorial and multistage. However, no single animal model can accurately mimic the full NASH-related HCC pathological progression, posing considerable challenges to transition and mechanistic studies. Herein, a novel conditional inducible wild-type human HRAS overexpressed mouse model (HRAS-HCC) was established, demonstrating 100% morbidity and mortality within approximately one month under normal dietary and lifestyle conditions. Advanced symptoms of HCC such as ascites, thrombus, internal hemorrhage, jaundice, and lung metastasis were successfully replicated in mice. In-depth pathological features of NASH- related HCC were demonstrated by pathological staining, biochemical analyses, and typical marker gene detections. Combined murine anti-PD-1 and sorafenib treatment effectively prolonged mouse survival, further confirming the accuracy and reliability of the model. Based on protein-protein interaction (PPI) network and RNA sequencing analyses, we speculated that overexpression of HRAS may initiate the THBS1-COL4A3 axis to induce NASH with severe fibrosis, with subsequent progression to HCC. Collectively, our study successfully duplicated natural sequential progression in a single murine model over a very short period, providing an accurate and reliable preclinical tool for therapeutic evaluations targeting the NASH to HCC continuum.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Proto-Oncogene Proteins p21(ras) , Animals , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/genetics , Carcinoma, Hepatocellular/pathology , Mice , Liver Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Disease Models, Animal , Mice, Transgenic , Mice, Inbred C57BL , Humans
4.
Int J Biol Macromol ; 270(Pt 1): 132028, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38704066

ABSTRACT

Clinical therapy for widespread infections caused by Streptococcus pneumoniae (S. pneumoniae), such as community-acquired pneumonia, is highly challenging. As an important bacterial toxin, hydrogen peroxide (H2O2) secreted by S. pneumoniae can suppress the host's immune system and cause more severe disease. To address this problem, a hyaluronic acid (HA)-coated inorganic catalase-driven Janus nanomotor was developed, which can cleverly utilize and decompose H2O2 to reduce the burden of bacterial infection, and have excellent drug loading capacity. HA coating prevents rapid leakage of loaded antibiotics and improves the biocompatibility of the nanomaterials. The Janus nanomotor converted H2O2 into oxygen (O2), gave itself the capacity to move actively, and encouraged widespread dispersion in the lesion site. Encouragingly, animal experiments demonstrated that the capability of the nanomotors to degrade H2O2 contributes to diminishing the proliferation of S. pneumoniae and lung tissue damage. This self-propelled drug delivery platform provides a new therapeutic strategy for infections with toxin-secreting bacteria.

5.
BMC Cardiovasc Disord ; 24(1): 252, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38750443

ABSTRACT

BACKGROUND: Interleukin-17 (IL-17) has been hypothesized to be involved in ischemic cardiovascular disease (ICVD). However, the association of IL-17 with ICVD remained unclear. The aim of this study was to systematically analyze the available evidence regarding the association between IL-17 and ICVD. METHODS: We searched the PubMed, Web of Science, Cochrane Library, and Embase databases up to October 2023 to identify publications on the association between IL-17 and ICVD. The merged results were analyzed using a random effects model for meta-analysis and subgroup analysis. RESULTS: A total of 955 publications were initially identified in our search and screened; six studies were eventually included in the analysis. The average age of study participants was 60.3 ± 12.6 years and 65.5% were men. There was a high degree of heterogeneity among studies. The results showed that IL-17 level were higher in the case group than those in the control group (standardized mean difference, SMD = 1.60, 95% confidence interval (95% CI): 0.53-2.66, P = 0.003). In sensitivity analysis, the merged results showed good robustness. Additionally, subgroup analysis showed that race and ethnicity, sample size, and detection methods were significant factors influencing heterogeneity in the published studies. CONCLUSION: Our finding revealed that increased IL-17 level contributed to the development of ICVD, suggesting IL-17 as a potential risk marker. Further research is needed to establish IL-17 as a therapeutic biomarker of ICVD.


Subject(s)
Biomarkers , Interleukin-17 , Myocardial Ischemia , Humans , Interleukin-17/blood , Male , Female , Middle Aged , Aged , Myocardial Ischemia/blood , Myocardial Ischemia/immunology , Myocardial Ischemia/diagnosis , Myocardial Ischemia/epidemiology , Risk Assessment , Biomarkers/blood , Up-Regulation , Risk Factors , Prognosis
6.
J Aging Phys Act ; : 1-11, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38753309

ABSTRACT

BACKGROUND: We aimed to evaluate the effectiveness of the combination of protein supplementation and resistance training (RT), compared with RT alone or combined with a placebo, in improving gait speed. METHODS: We searched PubMed, Web of Science, Cochrane Library, and SPORTDiscus databases, and 18 randomized controlled trials with 1,147 older participants were included for meta-analysis. Data were pooled as the effect sizes (Hedges' g) with 95% confidence interval (CI) of the gait speed (in meters per second). The random-effect meta-analysis, subgroup analyses, meta-regression, and sensitivity analysis were conducted. RESULTS: The combination of protein supplementation and RT significantly improved gait speed (Hedges' g: 0.52 m/s, 95% confidence interval [0.17, 0.86], p = .005; I2 = 86.5%) compared with the RT alone. The subgroup analyses revealed that the significant improvement in gait speed postprotein intervention plus RT was observed only in participants who consumed protein after RT (Hedges' g: 0.90 m/s, 95% confidence interval [0.46, 1.33], p = .001; I2 = 79.6%). The pooled result did not significantly change after excluding any single study at one time or excluding smaller studies with large effect sizes. CONCLUSIONS: Protein supplementation combined with RT could significantly improve the gait speed of older adults compared with RT alone. This positive effect is more pronounced in people who consume protein after RT.

7.
Biomaterials ; 309: 122584, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38735180

ABSTRACT

Inflammatory bowel disease (IBD) is a kind of auto-immune disease characterized by disrupted intestinal barrier and mucosal epithelium, imbalanced gut microbiome and deregulated immune responses. Therefore, the restoration of immune equilibrium and gut microbiota could potentially serve as a hopeful approach for treating IBD. Herein, the oral probiotic Escherichia coli Nissle 1917 (ECN) was genetically engineered to express secretable interleukin-2 (IL-2), a kind of immunomodulatory agent, for the treatment of IBD. In our design, probiotic itself has the ability to regulate the gut microenvironment and IL-2 at low dose could selectively promote the generation of regulatory T cells to elicit tolerogenic immune responses. To improve the bioavailability of ECN expressing IL-2 (ECN-IL2) in the gastrointestinal tract, enteric coating Eudragit L100-55 was used to coat ECN-IL2, achieving significantly enhanced accumulation of engineered probiotics in the intestine. More importantly, L100-55 coated ECN-IL2 could effectively activated Treg cells to regulate innate immune responses and gut microbiota, thereby relieve inflammation and repair the colon epithelial barrier in dextran sodium sulfate (DSS) induced IBD. Therefore, genetically and chemically modified probiotics with excellent biocompatibility and efficiency in regulating intestinal microflora and intestinal inflammation show great potential for IBD treatment in the future.

8.
J Am Chem Soc ; 146(21): 14528-14538, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38742912

ABSTRACT

Composite oxides have been widely applied in the hydrogenation of CO/CO2 to methanol or as the component of bifunctional oxide-zeolite for the synthesis of hydrocarbon chemicals. However, it is still challenging to disentangle the stepwise formation mechanism of CH3OH at working conditions and selectively convert CO2 to hydrocarbon chemicals with narrow distribution. Here, we investigate the reaction network of the hydrogenation of CO2 to methanol over a series of spinel oxides (AB2O4), among which the Zn-based nanostructures offer superior performance in methanol synthesis. Through a series of (quasi) in situ spectroscopic characterizations, we evidence that the dissociation of H2 tends to follow a heterolytic pathway and that hydrogenation ability can be regulated by the combination of Zn with Ga or Al. The coordinatively unsaturated metal sites over ZnAl2Ox and ZnGa2Ox originating from oxygen vacancies (OVs) are evidenced to be responsible for the dissociative adsorption and activation of CO2. The evolution of the reaction intermediates, including both carbonaceous and hydrogen species at high temperatures and pressures over the spinel oxides, has been experimentally elaborated at the atomic level. With the integration of a series of zeolites or zeotypes, high selectivities of hydrocarbon chemicals with narrow distributions can be directly produced from CO2 and H2, offering a promising route for CO2 utilization.

9.
J Geriatr Cardiol ; 21(4): 407-420, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38800545

ABSTRACT

OBJECTIVE: To evaluate the role of resting magnetocardiography in identifying severe coronary artery stenosis in patients with suspected coronary artery disease. METHODS: A total of 513 patients with angina symptoms were included and divided into two groups based on the extent of coronary artery disease determined by angiography: the non-severe coronary stenosis group (< 70% stenosis) and the severe coronary stenosis group (≥ 70% stenosis). The diagnostic model was constructed using magnetic field map (MFM) parameters, either individually or in combination with clinical indicators. The performance of the models was evaluated using receiver operating characteristic curves, accuracy, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV). Calibration plots and decision curve analysis were performed to investigate the clinical utility and performance of the models, respectively. RESULTS: In the severe coronary stenosis group, QR_MCTDd, S_MDp, and TT_MAC50 were significantly higher than those in the non-severe coronary stenosis group (10.46 ± 10.66 vs. 5.11 ± 6.07, P < 0.001; 7.2 ± 8.64 vs. 4.68 ± 6.95, P = 0.003; 0.32 ± 57.29 vs. 0.26 ± 57.29, P < 0.001). While, QR_MVamp, R_MA, and T_MA in the severe coronary stenosis group were lower (0.23 ± 0.16 vs. 0.28 ± 0.16, P < 0.001; 55.06 ± 48.68 vs. 59.24 ± 53.01, P < 0.001; 51.67 ± 39.32 vs. 60.45 ± 51.33, P < 0.001). Seven MFM parameters were integrated into the model, resulting in an area under the curve of 0.810 (95% CI: 0.765-0.855). The sensitivity, specificity, PPV, NPV, and accuracy were 71.7%, 80.4%, 93.3%, 42.8%, and 73.5%; respectively. The combined model exhibited an area under the curve of 0.845 (95% CI: 0.798-0.892). The sensitivity, specificity, PPV, NPV, and accuracy were 84.3%, 73.8%, 92.6%, 54.6%, and 82.1%; respectively. Calibration curves demonstrated excellent agreement between the nomogram prediction and actual observation. The decision curve analysis showed that the combined model provided greater net benefit compared to the magnetocardiography model. CONCLUSIONS: The novel quantitative MFM parameters, whether used individually or in combination with clinical indicators, have been shown to effectively predict the risk of severe coronary stenosis in patients presenting with angina-like symptoms. Magnetocardiography, an emerging non-invasive diagnostic tool, warrants further exploration for its potential in diagnosing coronary heart disease.

10.
Vaccine ; 42(15): 3389-3396, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38653679

ABSTRACT

BACKGROUND: A global shift to bivalent mRNA vaccines is ongoing to counterbalance the diminishing effectiveness of the original monovalent vaccines due to the evolution of SARS-CoV-2 variants, yet substantial variation in the bivalent vaccine effectiveness (VE) exists across studies and a complete picture is lacking. METHODS: We searched papers evaluating absolute or relative effectiveness of SARS-CoV-2 BA.1 type or BA.4/5 type bivalent mRNA vaccines on eight publication databases published from September 1st, 2022, to November 8th, 2023. Pooled VE against Omicron-associated infection and severe events (hospitalization and/or death) was estimated in reference to unvaccinated, ≥2 original monovalent doses, and ≥ 3 original monovalent doses. RESULTS: From 630 citations identified, 28 studies were included, involving 55,393,303 individuals. Bivalent boosters demonstrated higher effectiveness against symptomatic or any infection for all ages combined, with an absolute VE of 53.5 % (95 % CI: -22.2-82.3 %) when compared to unvaccinated and relative VE of 30.8 % (95 % CI: 22.5-38.2 %) and 28.4 % (95 % CI: 10.2-42.9 %) when compared to ≥ 2 and ≥ 3 original monovalent doses, respectively. The corresponding VE estimates for adults ≥ 60 years old were 22.5 % (95 % CI: 16.8-39.8 %), 31.4 % (95 % CI: 27.7-35.0 %), and 30.6 % (95 % CI: -13.2-57.5 %). Pooled bivalent VE estimates against severe events were higher, 72.9 % (95 % CI: 60.5-82.4 %), 57.6 % (95 % CI: 42.4-68.8 %), and 62.1 % (95 % CI: 54.6-68.3 %) for all ages, and 72.0 % (95 % CI: 51.4-83.9 %), 63.4 % (95 % CI: 41.0-77.3 %), and 60.7 % (95 % CI: 52.4-67.6 %) for adults ≥ 60 years old, compared to unvaccinated, ≥2 original monovalent doses, and ≥ 3 original monovalent doses, respectively. CONCLUSIONS: The bivalent boosters demonstrated superior protection against severe outcomes than the original monovalent boosters across age groups, highlighting the critical need for improving vaccine coverage, especially among the vulnerable older subpopulation.


Subject(s)
COVID-19 Vaccines , COVID-19 , Immunization, Secondary , SARS-CoV-2 , Vaccine Efficacy , mRNA Vaccines , Humans , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , COVID-19/immunology , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Immunization, Secondary/methods , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage , Middle Aged , Adult
11.
J Environ Manage ; 358: 120909, 2024 May.
Article in English | MEDLINE | ID: mdl-38642487

ABSTRACT

Achieving an equilibrium between exceptional oil absorption and remarkable elasticity has emerged as a formidable challenge for magnetic porous materials designed for oil absorption. Here, we propose an original, magnetic and superhydrophobic cellulose nanofibril (CNF) based aerogel system with a rope-ladder like skeleton by to greatly improve the issue. Within this system, CNF as the skeleton was combined with multiwalled carbon nanotubes (MWCNT)@Fe3O4 as the magnetic and enhanced component, both methyltrimethoxysilane (MTMS) and acetonitrile-extracted lignin (AEL) as the soft-hard associating constituents. The resultant CNF based aerogel shows a rope-ladder like pore structure to contribute to high elasticity and excellent oil absorption (28.34-61.09 g/g for various oils and organic solvents) under the synergistic effect of Fe3O4@MWCNT, AEL and MTMS, as well as good specific surface area (27.97 m2/g), low density (26.4 mg/cm3). Notably, despite the introduced considerable proportion (0.5 times of mass-CNF) of Fe3O4@MWCNT, the aerogel retained an impressive compression-decompression rate (88%) and the oil absorption efficiency of above 87% for various oils due to the soft-hard associating structure supported by both MTMS and AEL. This study provides a prospective strategy to balance between high elasticity and excellent oil absorption of CNF based aerogel doping inorganic particles.


Subject(s)
Cellulose , Hydrophobic and Hydrophilic Interactions , Nanofibers , Cellulose/chemistry , Nanofibers/chemistry , Oils/chemistry , Gels/chemistry , Nanotubes, Carbon/chemistry , Elasticity , Porosity
12.
Sci Total Environ ; 927: 172368, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38614346

ABSTRACT

BACKGROUND: Disinfection byproducts (DBPs) have been shown to impair thyroid function in experimental models. However, epidemiological evidence is scarce. METHODS: This study included 1190 women undergoing assisted reproductive technology (ART) treatment from the Tongji Reproductive and Environmental (TREE) cohort from December 2018 to August 2021. Serum thyrotropin (TSH), free triiodothyronine (FT3), and free thyroxine (FT4) were measured as indicators of thyroid function. FT4/FT3 and TSH/FT4 ratios were calculated as markers of thyroid hormone homeostasis. Dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA), the two most abundant HAAs, in urine were detected to assess individual DBP exposures. RESULTS: After adjusting for relevant covariates, positive associations were observed between urinary TCAA concentrations and serum TSH and TSH/FT4 levels (e.g., percent change = 5.82 %, 95 % CI: 0.70 %, 11.21 % for TSH), whereas inverse associations were found for serum FT3 and FT4 (e.g., percent change = -1.29 %, 95 % CI: -2.49 %, -0.07 % for FT3). There also was a negative association between urinary DCAA concentration and serum FT4/FT3 (percent change = -2.49 %, 95 % CI: -4.71 %, -0.23 %). These associations were further confirmed in the restricted cubic spline and generalized additive models with linear or U-shaped dose-response relationships. CONCLUSION: Urinary HAAs were associated with altered thyroid hormone homeostasis among women undergoing ART treatment.


Subject(s)
Thyroid Gland , Humans , Female , Adult , Thyroxine/blood , Triiodothyronine/blood , Thyrotropin/blood , Thyroid Hormones/blood , Thyroid Function Tests , Disinfectants , Acetates , China
13.
Phys Rev Lett ; 132(8): 085001, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38457729

ABSTRACT

We demonstrate a silicon-based electron accelerator that uses laser optical near fields to both accelerate and confine electrons over extended distances. Two dielectric laser accelerator (DLA) designs were tested, each consisting of two arrays of silicon pillars pumped symmetrically by pulse front tilted laser beams, designed for average acceleration gradients 35 and 50 MeV/m, respectively. The DLAs are designed to act as alternating phase focusing (APF) lattices, where electrons, depending on the electron-laser interaction phase, will alternate between opposing longitudinal and transverse focusing and defocusing forces. By incorporating fractional period drift sections that alter the synchronous phase between ±60° off crest, electrons captured in the designed acceleration bucket experience half the peak gradient as average gradient while also experiencing strong confinement forces that enable long interaction lengths. We demonstrate APF accelerators with interaction lengths up to 708 µm and energy gains up to 23.7±1.07 keV FWHM, a 25% increase from starting energy, demonstrating the ability to achieve substantial energy gains with subrelativistic DLA.

14.
Aging Dis ; 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38502584

ABSTRACT

Vascular aging (VA) is recognized as a pivotal factor in the development and progression of atherosclerosis (AS). Although various epidemiological and clinical research has demonstrated an intimate connection between aging and AS, the candidate mechanisms still require thorough examination. This review adopts an aging-centric perspective to deepen the comprehension of the intricate relationship between biological aging, vascular cell senescence, and AS. Various aging-related physiological factors influence the physical system's reactions, including oxygen radicals, inflammation, lipids, angiotensin II, mechanical forces, glucose levels, and insulin resistance. These factors cause endothelial dysfunction, barrier damage, sclerosis, and inflammation for VA and promote AS via distinct or shared pathways. Furthermore, the increase of senescent cells inside the vascular tissues, caused by genetic damage, dysregulation, secretome changes, and epigenetic modifications, might be the primary cause of VA.

15.
Clin Oral Investig ; 28(3): 198, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38448657

ABSTRACT

OBJECTIVES: This study aimed to use all permanent teeth as the target and establish an automated dental age estimation method across all developmental stages of permanent teeth, accomplishing all the essential steps of tooth determination, tooth development staging, and dental age assessment. METHODS: A three-step framework for automatically estimating dental age was developed for children aged 3 to 15. First, a YOLOv3 network was employed to complete the tasks of tooth localization and numbering on a digital orthopantomogram. Second, a novel network named SOS-Net was established for accurate tooth development staging based on a modified Demirjian method. Finally, the dental age assessment procedure was carried out through a single-group meta-analysis utilizing the statistical data derived from our reference dataset. RESULTS: The performance tests showed that the one-stage YOLOv3 detection network attained an overall mean average precision 50 of 97.50 for tooth determination. The proposed SOS-Net method achieved an average tooth development staging accuracy of 82.97% for a full dentition. The dental age assessment validation test yielded an MAE of 0.72 years with a full dentition (excluding the third molars) as its input. CONCLUSIONS: The proposed automated framework enhances the dental age estimation process in a fast and standard manner, enabling the reference of any accessible population. CLINICAL RELEVANCE: The tooth development staging network can facilitate the precise identification of permanent teeth with abnormal growth, improving the effectiveness and comprehensiveness of dental diagnoses using pediatric orthopantomograms.


Subject(s)
Deep Learning , Humans , Child , Molar, Third , Odontogenesis , Radiography, Panoramic
16.
Cell Cycle ; 23(3): 294-307, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38446489

ABSTRACT

The increase of the Fusobacterium nucleatum level has been previously identified in various cancers including gastric cancer (GC), but how the F. nucleatum exerts its carcinogenic role in GC remains unclear. Several studies revealed that F. nucleatum contributes to cancer progression via its secretion of extracellular vehicles (EVs). Hence, it's designed to reveal the influence of F. nucleatum-derived EVs (Fn-EVs) in GC progression. The tumor and adjacent tissues were collected from 30 GC patients, and the abundance of F. nucleatum was found to be highly expressed in tumor samples. The ultracentrifugation was employed to isolate EVs from F. nucleatum and Escherischia coli (E. coli), which were labeled Fn-EVs and E. coli-EVs, respectively. After treating GC cells with Fn-EVs and E. coli-EVs, cell counting kit 8, colony formation, wound healing as well as transwell assay were performed, which revealed that Fn-EVs effectively enhanced oxaliplatin resistance, and facilitated cell proliferation, migration, invasion, and stemness in GC cells while E. coli-EVs exert no significant effect on GC cells. Besides, the stemness and DNA repair of GC cells were also enhanced by Fn-EVs, as revealed by the sphere-forming assay and the detection of stemness- and DNA repair-associated proteins by western blotting. In vivo analyses demonstrated that Fn-EVs administration not only promoted GC tumor growth and liver metastasis but also conferred GC tumor resistance to oxaliplatin resistance. This study first revealed the contributive role of F. nucleatum in GC development via Fn-EVs, which provided a better perspective for manipulating F. nucleatum in treating GC patients with malignant phenotypes.


Subject(s)
Cell Movement , Cell Proliferation , Extracellular Vesicles , Fusobacterium nucleatum , Stomach Neoplasms , Humans , Extracellular Vesicles/metabolism , Stomach Neoplasms/pathology , Stomach Neoplasms/microbiology , Stomach Neoplasms/metabolism , Cell Line, Tumor , Animals , Phenotype , Mice , Mice, Nude , Female , Drug Resistance, Neoplasm , Male , Mice, Inbred BALB C , DNA Repair , Escherichia coli/metabolism , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Neoplasm Invasiveness
17.
Sci Rep ; 14(1): 6369, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38493196

ABSTRACT

To study the effects of gas hydrates on the prevention and control of coal and gas protrusions, this paper reports the results of acoustic emission experiments on coal bodies containing gas hydrates with different saturation levels. The results showed that few acoustic emission events were generated in the elasticity stages of coal bodies containing gas hydrates, and the first sudden increase in the number of ringing counts generally occurred before and after the yielding point. Additionally, the acoustic emission events in the yielding stage were more active, and the cumulative number of ringing counts increased faster. The peak ringing counts appeared around the damage point, and a small number of acoustic emission events were still generated after destruction of the coal samples. The cumulative ringing counts decreased linearly with increasing saturation. The effect of saturation on the cumulative ringing counts in the elasticity stage of the gas hydrate-containing coal samples was small, but the difference between the cumulative ringing counts in the yielding stage and those in the destruction stage was larger. The total cumulative ringing counts and the cumulative ringing counts during each stage for the gas hydrate-containing coal samples decreased with increasing enclosure pressure. The energy and amplitude of the loading process were consistent with the trend for the ringing counts. The acoustic emission ringing counts of gas-containing coals were greater than those of gas hydrate-containing coals in the yielding and destructing stages.

18.
Nanoscale ; 16(15): 7409-7418, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38511281

ABSTRACT

The patterning of functional nanomaterials shows a promising path in the advanced fabrication of electronic and optoelectronic devices. Current micropatterning strategies are indispensable for post-etching/liftoff processes that contaminate/damage functional materials. Herein, we developed an innovative, low-temperature, post-liftoff-free, seed-confined fabricating strategy that can tackle this issue, thus achieving designated patterns of flower-shaped AgBiS2 nanostructures at either micro- or macro-scale on arbitrary substrates that are either rigid or flexible. Made of patterned AgBiS2 nanostructures, the photoconductor shows broadband (320 nm-2200 nm), sensitive (Rpeak = 1.56 A W-1), and fast (less than 100 µs) photoresponses. Furthermore, single-pixel raster-scanning and 28 × 12 focal plane array imaging were performed to demonstrate reliable and resolved electrical responses to optical patterns, showcasing the potential of the photoconductor in practical imaging applications. Notably, the patterning process enables strain-releasing micro-structures, which lead to the fabrication of a flexible photodetector with high durability upon over 1000 bending/recovering testing cycles. This study provides a simple, low-temperature, and eco-friendly strategy to address the current challenges in non-aggressive micro-fabrication and arbitrary patterning of semiconductors, which are promising to meet the development of further emerging technologies in scalable and wearable optoelectronic sensors.

19.
Bioresour Technol ; 399: 130632, 2024 May.
Article in English | MEDLINE | ID: mdl-38552859

ABSTRACT

In this study, we investigated the advantages of utilizing natural FeS2 ore in the context of dark fermentative hydrogen production within a fermentation system employing heat-treated anaerobic granular sludge with xylose as the carbon source. The results demonstrated a significant improvement in both hydrogen production and the maximum rate, with increases of 2.58 and 4.2 times, respectively. Moreover, the presence of FeS2 ore led to a reduction in lag time by more than 2-3 h. The enhanced biohydrogen production performance was attributed to factors such as the intracellular NADH/NAD+ ratio, redox-active components of extracellular polymeric substances, secreted flavins, as well as the presence of hydrogenase and nitrogenase. Furthermore, the FeS2 ore served as a direct electron donor and acceptor during biohydrogen production. This study shed light on the underlying mechanisms contributing to the improved performance of biohydrogen production from xylose during dark fermentation through the supplementation of natural FeS2 ore.


Subject(s)
Sewage , Xylose , Fermentation , Hot Temperature , Hydrogen/analysis
20.
Int J Biol Macromol ; 265(Pt 1): 130807, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38484808

ABSTRACT

Magnetic superhydrophobic materials have broad application prospect in oil-water separation. In this study, a magnetic and superhydrophobic aerogel with lamellar structure was successfully prepared using cellulose nanofibrils (CNF) as the skeleton, Fe3O4 as the magnetic ion, 1H, 1H, 2H, 2H trialkylfluorooctane triethoxysilane (FS) and 3-(2-aminoethyl amino)-propyl trimethoxysilane (AS) as the combined modifier. The prepared aerogel shows lower density (38.63 mg/cm3), excellent magnetic (15.13 emu/g), high elasticity and good oil sorption properties (21 g/g). In addition, FS/AS also exhibits excellent mechanical properties and superhydrophobic ability (water contact angle (WCA) of 151.9 ± 1.4°), as it provides sufficient toughness and low surface energy for the layer-branch structure. It should be noted that the entire preparation process is carried out in the aqueous phase, without the use of any organic solvents, providing a green oil-water separation strategy.


Subject(s)
Cellulose , Water , Elasticity , Radiopharmaceuticals , Hydrophobic and Hydrophilic Interactions
SELECTION OF CITATIONS
SEARCH DETAIL
...