Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Publication year range
1.
Environ Sci Pollut Res Int ; 26(36): 36367-36379, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31721028

ABSTRACT

Colloidal phosphorus (CP) as an additional route of P mobilization in soil solution has gained much attention. A batch experiment was conducted to investigate the effect of sheep manure-derived biochar (SMB) on CP release from various land uses (paddy, vegetable, tea, and citrus) at a rate of 0% as a control treatment (CK), 1% as a low (L) level, 2% as a middle (M) level, and 4% as a high (H) level of SMB application. The CP and MRPcoll in the solution increased from 30.58 to 88.97% and from 2.45 to 55.54% of total P (TP), respectively. The SMB enhanced CP release in all the soils and all the treatments (except CK and L levels in tea soil; CK, L, and M levels in vegetable soil; and L and M levels in citrus soil). Multiple linear regression revealed a significant correlation between CP and MRPcoll and between colloidal iron, aluminum, calcium, and total organic carbon (Fecoll, Alcoll, Cacoll, and TOCcoll) and pH, which may play an important role as CP carriers that could depend on the pH. This study suggests that the application of SMB in the soil at an appropriate rate of 1 and 2% for tea and vegetable soils, respectively, could be beneficial to avoid the risk of CP release in water bodies.


Subject(s)
Charcoal/chemistry , Manure/analysis , Phosphorus/analysis , Sheep , Soil/chemistry , Animals , Colloids , Protons
2.
Chinese Journal of Biotechnology ; (12): 552-565, 2015.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-240619

ABSTRACT

Transcriptional regulation is one of the major regulations in plant adventious shoot regeneration, but the exact mechanism remains unclear. In our study, the RNA-seq technology based on the IlluminaHiSeq 2000 sequencing platform was used to identify differentially expressed transcription factor (TF) encoding genes during callus formation stage and adventious shoot regeneration stage between wild type and adventious shoot formation defective mutant be1-3 and during the transition from dedifferentiation to redifferentiation stage in wildtype WS. Results show that 155 TFs were differentially expressed between be1-3 mutant and wild type during callus formation, of which 97 genes were up-regulated, and 58 genes were down-regulated; and that 68 genes were differentially expressed during redifferentiation stage, with 40 genes up-regulated and 28 genes down-regulated; whereas at the transition stage from dedifferentiation to redifferention in WS wild type explants, a total of 231 differentially expressed TF genes were identified, including 160 up-regualted genes and 71 down-regulated genes. Among these TF genes, the adventious shoot related transcription factor 1 (ART1) gene encoding a MYB-related (v-myb avian myeloblastosis viral oncogene homolog) TF, was up-regulated 3 217 folds, and was the highest up-regulated gene during be1-3 callus formation. Over expression of the ART1 gene caused defects in callus formation and shoot regeneration and inhibited seedling growth, indicating that the ART1 gene is a negative regulator of callus formation and shoot regeneration. This work not only enriches our knowledge about the transcriptional regulation mechanism of adventious shoot regeneration, but also provides valuable information on candidate TF genes associated with adventious shoot regeneration for future research.


Subject(s)
Arabidopsis , Arabidopsis Proteins , Physiology , Gene Expression Regulation, Plant , Genes, Plant , Plant Shoots , RNA , Regeneration , Seedlings , Transcription Factors , Physiology , Up-Regulation
3.
Waste Manag ; 29(2): 590-7, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18778928

ABSTRACT

The concentration and bioavailability of heavy metals in composted organic wastes have negative environmental impacts following land application. Aerobic composting procedures were conducted to investigate the influences of selected parameters on heavy metal speciation and phytotoxicity. Results showed that both of sewage sludge (SSC) and swine manure (SMC) composting systems decreased the pH, the content of organic matter (OM) and dissolved organic carbon (DOC), and total amounts of Cu, Zn and Pb. Sequential extraction showed that readily extractible fractions of exchangeable and carbonate in Cu and Zn increased during SSC composting but decreased during SMC composting, thus their bioavailability factors (BF) enhanced in SSC but declined in SMC. The fraction of reducible iron and manganese (FeMnOX) of Cu and Zn in SSC and FeMnOX-Cu in SMC decreased, but FeMnOX-Zn in SMC gradually increased in the process of compost. In contrast, the changes of Pb distributions were similar in two organic wastes. Pb was preferentially bound to the residual fraction and its BF decreased. The evolution of heavy metal distributions and BF depended on not only total metal concentrations but also the other properties, such as pH, decomposition of OM and decline of DOC. The germination rate (RSG), root growth (RRG) and germination index (GI) of pakchoi (Brassica Chinensis L.) increased during the composting process. Linear regression analysis demonstrated that GI, which could represent phytotoxic behavior to the plants, could be poorly predicted by BF or total amount of metals, i.e., BF-Zn, T-Cu. However, the inclusion of other physicochemical parameters (pH, OM and DOC) could enhance the linear regression significances (R).


Subject(s)
Copper/chemistry , Feces/chemistry , Lead/chemistry , Sewage/chemistry , Soil/analysis , Zinc/chemistry , Animals , Conservation of Natural Resources , Environmental Pollution/prevention & control , Refuse Disposal/methods , Swine , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...