Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
1.
Molecules ; 29(2)2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38257397

ABSTRACT

Indole is an important element of many natural and synthetic molecules with significant biological activity. Nonetheless, the co-presence of transitional metals in organic scaffold may represent an important factor in the development of effective medicinal agents. This review covers some of the latest and most relevant achievements in the biological and pharmacological activity of important indole-containing metal complexes in the area of drug discovery.


Subject(s)
Coordination Complexes , Coordination Complexes/pharmacology , Drug Discovery , Indoles/pharmacology
2.
Inorg Chem ; 63(2): 1083-1101, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38156413

ABSTRACT

A novel class of Ru(II)-based polypyridyl complexes with an auxiliary salicylaldehyde ligand [Ru(phen)2(X-Sal)]BF4 {X: H (1), 5-Cl (2), 5-Br (3), 3,5-Cl2 (4), 3,5-Br2 (5), 3-Br,5-Cl (6), 3,5-I2 (7), 5-NO2 (8), 5-Me (9), 4-Me (10), 4-OMe (11), and 4-DEA (12), has been synthesized and characterized by elemental analysis, FT-IR, and 1H/13C NMR spectroscopy. The molecular structure of 4, 6, 9, 10, and 11 was determined by single-crystal X-ray diffraction analysis which revealed structural similarities. DFT and TD-DFT calculations showed that they also possess similar electronic structures. Absorption/emission spectra were recorded for 2, 3, 10, and 11. All Ru-complexes, unlike the pure ligands and the complex lacking the salicylaldehyde component, displayed outstanding antiproliferative activity in the screening test (10 µM) against CCRF-CEM leukemia cells underlining the crucial role of the presence of the auxiliary ligand for the biological activity. The two most active derivatives, namely 7 and 10, were selected for continuous assays showing IC50 values in the submicromolar and micromolar range against drug-sensitive CCRF-CEM and multidrug-resistant CEM/ADR5000 leukemia cells, respectively. These two compounds were investigated in silico for their potential binding to duplex DNA well-matched and mismatched base pairs, since they showed remarkable selectivity indexes (2.2 and 19.5 respectively) on PBMC cells.


Subject(s)
Aldehydes , Antineoplastic Agents , Coordination Complexes , Leukemia , Ruthenium , Humans , Ligands , Leukocytes, Mononuclear/metabolism , Spectroscopy, Fourier Transform Infrared , Ruthenium/pharmacology , Ruthenium/chemistry , Coordination Complexes/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
3.
Biomolecules ; 13(9)2023 Sep 02.
Article in English | MEDLINE | ID: mdl-37759739

ABSTRACT

The main protease (Mpro) plays a pivotal role in the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is considered a highly conserved viral target. Disruption of the catalytic activity of Mpro produces a detrimental effect on the course of the infection, making this target one of the most attractive for the treatment of COVID-19. The current success of the SARS-CoV-2 Mpro inhibitor Nirmatrelvir, the first oral drug for the treatment of severe forms of COVID-19, has further focused the attention of researchers on this important viral target, making the search for new Mpro inhibitors a thriving and exciting field for the development of antiviral drugs active against SARS-CoV-2 and related coronaviruses.

4.
Eur J Pharmacol ; 956: 175980, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37567459

ABSTRACT

The use of cisplatin and its derivatives in cancer treatment triggered the interest in metal-containing complexes as potential novel anticancer agents. Palladium (II)-based complexes have been synthesized in recent years with promising antitumor activity. Previously, we described the synthesis and cytotoxicity of palladium (II) complexes containing halogen-substituted Schiff bases and 2-picolylamine. Here, we selected two palladium (II) complexes with double chlorine-substitution or double iodine-substitution that displayed the best cytotoxicity in drug-sensitive CCRF-CEM and multidrug-resistant CEM/ADR5000 leukemia cells for further biological investigation. Surprisingly, these compounds did not significantly induce apoptotic cell death. This study aims to reveal the major mode of cell death of these two palladium (II) complexes. We performed annexin V-FITC/PI staining and flow cytometric mitochondrial membrane potential measurement followed by western blotting, immunofluorescence microscopy, and alkaline single cell electrophoresis (comet assay). J4 and J6 still induced neither apoptosis nor necrosis in both leukemia cell lines. They also insufficiently induced autophagy as evidenced by Beclin and p62 detection in western blotting. Interestingly, J4 and J6 induced a novel mode of cell death (parthanatos) as mainly demonstrated in CCRF-CEM cells by hyper-activation of poly(ADP-ribose) polymerase 1 (PARP) and poly(ADP-ribose) (PAR) using western blotting, flow cytometric measurement of mitochondrial membrane potential collapse, nuclear translocation of apoptosis-inducing factor (AIF) by immunofluorescence microscopy, and DNA damage by alkaline single cell electrophoresis (comet assay). AIF translocation was also observed in CEM/ADR5000 cells. Thus, parthanatos was the predominant mode of cell death induced by J4 and J6, which explains the high cytotoxicity in CCRF-CEM and CEM/ADR5000 cells. J4 and J6 may be interesting drug candidates and deserve further investigations to overcome resistance of tumors against apoptosis. This study will promote the design of further novel palladium (II)-based complexes as chemotherapeutic agents.


Subject(s)
Antineoplastic Agents, Phytogenic , Leukemia , Parthanatos , Humans , Palladium/pharmacology , Halogens/pharmacology , Schiff Bases/pharmacology , Cell Line, Tumor , Drug Resistance, Neoplasm , Drug Resistance, Multiple , Antineoplastic Agents, Phytogenic/pharmacology , Cell Death , Apoptosis , Leukemia/drug therapy
5.
Org Biomol Chem ; 21(18): 3811-3824, 2023 05 10.
Article in English | MEDLINE | ID: mdl-37078164

ABSTRACT

COVID-19 now ranks among the most devastating global pandemics in history. The causative virus, SARS-CoV-2, is a new human coronavirus (hCoV) that spreads among humans and animals. Great efforts have been made to develop therapeutic agents to treat COVID-19, and among the available viral molecular targets, the cysteine protease SARS-CoV-2 Mpro is considered the most appealing one due to its essential role in viral replication. However, the inhibition of Mpro activity is an interesting challenge and several small molecules and peptidomimetics have been synthesized for this purpose. In this work, the Michael acceptor cinnamic ester was employed as an electrophilic warhead for the covalent inhibition of Mpro by endowing some peptidomimetic derivatives with such a functionality. Among the synthesized compounds, the indole-based inhibitors 17 and 18 efficiently impaired the in vitro replication of beta hCoV-OC-43 in the low micromolar range (EC50 = 9.14 µM and 10.1 µM, respectively). Moreover, the carbamate derivative 12 showed an antiviral activity of note (EC50 = 5.27 µM) against another hCoV, namely hCoV-229E, thus suggesting the potential applicability of such cinnamic pseudopeptides also against human alpha CoVs. Taken together, these results support the feasibility of considering the cinnamic framework for the development of new Mpro inhibitors endowed with antiviral activity against human coronaviruses.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Virus Replication , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry
6.
Arch Pharm (Weinheim) ; 356(7): e2300174, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37119396

ABSTRACT

The ubiquitin-proteasome pathway (UPP) represents the principal proteolytic apparatus in the cytosol and nucleus of all eukaryotic cells. Nowadays, proteasome inhibitors (PIs) are well-known as anticancer agents. However, although three of them have been approved by the US Food and Drug Administration (FDA) for treating multiple myeloma and mantel cell lymphoma, they present several side effects and develop resistance. For these reasons, the development of new PIs with better pharmacological characteristics is needed. Recently, noncovalent inhibitors have gained much attention since they are less toxic as compared with covalent ones, providing an alternative mechanism for solid tumors. Herein, we describe a new class of bis-homologated chloromethyl(trifluoromethyl)aziridines as selective noncovalent PIs. In silico and in vitro studies were conducted to elucidate the mechanism of action of such compounds. Human gastrointestinal absorption (HIA) and blood-brain barrier (BBB) penetration were also considered together with absorption, distribution, metabolism, and excretion (ADMET) predictions.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/therapeutic use , Structure-Activity Relationship , Antineoplastic Agents/pharmacology , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/therapeutic use , Neoplasms/drug therapy
7.
Molecules ; 28(5)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36903597

ABSTRACT

The COVID-19 pandemic has given a strong impetus to the search for antivirals active on SARS-associated coronaviruses. Over these years, numerous vaccines have been developed and many of these are effective and clinically available. Similarly, small molecules and monoclonal antibodies have also been approved by the FDA and EMA for the treatment of SARS-CoV-2 infection in patients who could develop the severe form of COVID-19. Among the available therapeutic tools, the small molecule nirmatrelvir was approved in 2021. It is a drug capable of binding to the Mpro protease, an enzyme encoded by the viral genome and essential for viral intracellular replication. In this work, by virtual screening of a focused library of ß-amido boronic acids, we have designed and synthesized a focused library of compounds. All of them were biophysically tested by microscale thermophoresis, attaining encouraging results. Moreover, they also displayed Mpro protease inhibitory activity, as demonstrated by performing enzymatic assays. We are confident that this study will pave the way for the design of new drugs potentially useful for the treatment of SARS-CoV-2 viral infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Pandemics , Protease Inhibitors/chemistry , Antiviral Agents/pharmacology , Molecular Docking Simulation
8.
Molecules ; 28(2)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36677572

ABSTRACT

SARS-CoV-2 Mpro is a chymotrypsin-like cysteine protease playing a relevant role during the replication and infectivity of SARS-CoV-2, the coronavirus responsible for COVID-19. The binding site of Mpro is characterized by the presence of a catalytic Cys145 which carries out the hydrolytic activity of the enzyme. As a consequence, several Mpro inhibitors have been proposed to date in order to fight the COVID-19 pandemic. In our work, we designed, synthesized and biologically evaluated MPD112, a novel inhibitor of SARS-CoV-2 Mpro bearing a trifluoromethyl diazirine moiety. MPD112 displayed in vitro inhibition activity against SARS-CoV-2 Mpro at a low micromolar level (IC50 = 4.1 µM) in a FRET-based assay. Moreover, an inhibition assay against PLpro revealed lack of inhibition, assuring the selectivity of the compound for the Mpro. Furthermore, the target compound MPD112 was docked within the binding site of the enzyme to predict the established intermolecular interactions in silico. MPD112 was subsequently tested on the HCT-8 cell line to evaluate its effect on human cells' viability, displaying good tolerability, demonstrating the promising biological compatibility and activity of a trifluoromethyl diazirine moiety in the design and development of SARS-CoV-2 Mpro binders.


Subject(s)
Antiviral Agents , Diazomethane , Protease Inhibitors , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Diazomethane/chemistry , Diazomethane/pharmacology , Molecular Docking Simulation , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects
9.
Int J Mol Sci ; 23(24)2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36555601

ABSTRACT

In the panorama of sustainable chemistry, the use of green solvents is increasingly emerging for the optimization of more eco-friendly processes which look to a future of biocompatibility and recycling. The green solvent Cyrene, obtained from biomass via a two-step synthesis, is increasingly being introduced as the solvent of choice for the development of green synthetic transformations and for the production of biomaterials, thanks to its interesting biocompatibility, non-toxic and non-mutagenic properties. Our review offers an overview of the most important organic reactions that have been investigated to date in Cyrene as a medium, in particular focusing on those that could potentially lead to the formation of relevant chemical bonds in bioactive molecules. On the other hand, a description of the employment of Cyrene in the production of biomaterials has also been taken into consideration, providing a point-by-point overview of the use of Cyrene to date in the aforementioned fields.


Subject(s)
Green Chemistry Technology , Solvents/chemistry , Biomass
10.
Beilstein J Nanotechnol ; 13: 1361-1369, 2022.
Article in English | MEDLINE | ID: mdl-36474926

ABSTRACT

Advanced nanoscale antimicrobials, originated from the combination of noble metal nanoparticles (NPs) with conventional antimicrobial drugs, are considered the next generation of antimicrobial agents. Therefore, there is an increasing demand for rapid, eco-friendly, and relatively inexpensive synthetic approaches for the preparation of nontoxic metallic nanostructures endowed with unique physicochemical properties. Recently, we have proposed a straightforward synthetic strategy that exploits the properties of polymeric ß-cyclodextrin (PolyCD) to act as both the reducing and stabilizing agent to produce monodispersed and stable gold-based NPs either as monometallic (nanoG) structures or core-shell bimetallic (nanoGS) architectures with an external silver layer. Here, we describe the preparation of a supramolecular assembly between nanoGS and pentamidine, an antileishmanial drug endowed with a wide range of therapeutic properties (i.e., antimicrobial, anti-inflammatory, and anticancer). The physicochemical characterization of the supramolecular assembly (nanoGSP) in terms of size and colloidal stability was investigated by complementary spectroscopic techniques, such as UV-vis, ζ-potential, and dynamic light scattering (DLS). Furthermore, the role of PolyCD during the reduction/stabilization of metal NPs was investigated for the first time by NMR spectroscopy.

11.
Molecules ; 27(24)2022 Dec 17.
Article in English | MEDLINE | ID: mdl-36558133

ABSTRACT

Transition metal complexes have continued to constitute an appealing class of medicinal compounds since the exceptional discovery of cisplatin in the late 1960s. Pt(II)-based complexes are endowed with a broad range of biological properties, which are mainly exerted by targeting DNA. In this study, we report a significant biological investigation into and computation analyses of four Pt(II)-complexes, namely, LDP-1-4, synthesized and characterized according to previously reported procedures. Molecular-modelling studies highlighted that the top two LDP compounds (i.e., LDP-1 and LDP-4) might bind to both matched and mismatched base pair sites of the oligonucleotide 5'-(dCGGAAATTACCG)2-3', supporting their anticancer potential. These two complexes displayed noteworthy cytotoxicity in vitro (sub-micromolar-micromolar range) against two leukaemia cell lines, i.e., CCRF-CEM and its multi-drug-resistant counterpart CEM/ADR5000, and remarkable anti-angiogenic properties (in the sub-micromolar range) evaluated in an in vivo model, i.e., a chick embryo chorioallantoic membrane (CAM) assay.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Animals , Chick Embryo , Platinum/pharmacology , Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Cisplatin , DNA , Cell Line, Tumor
12.
Int J Mol Sci ; 23(20)2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36293216

ABSTRACT

The ubiquitin-proteasome pathway (UPP) is the major proteolytic system in the cytosol and nucleus of all eukaryotic cells. The role of proteasome inhibitors (PIs) as critical agents for regulating cancer cell death has been established. Aziridine derivatives are well-known alkylating agents employed against cancer. However, to the best of our knowledge, aziridine derivatives showing inhibitory activity towards proteasome have never been described before. Herein we report a new class of selective and nonPIs bearing an aziridine ring as a core structure. In vitro cell-based assays (two leukemia cell lines) also displayed anti-proliferative activity for some compounds. In silico studies indicated non-covalent binding mode and drug-likeness for these derivatives. Taken together, these results are promising for developing more potent PIs.


Subject(s)
Antineoplastic Agents , Aziridines , Neoplasms , Humans , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/therapeutic use , Proteasome Endopeptidase Complex/metabolism , Antineoplastic Agents/therapeutic use , Aziridines/pharmacology , Aziridines/chemistry , Neoplasms/metabolism , Alkylating Agents , Ubiquitins
13.
Org Biomol Chem ; 20(42): 8293-8304, 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36227250

ABSTRACT

α,α-Difluoromethyl ketones (DFMKs) have emerged as currently investigated agents benefiting from the merging of chemico-physical features conferred by the constitutive elements (-CHF2 and carbonyl moietites). With a view to biological applications, the additional incorporation of heterocycles is a desirable property enabling the tuning of critical factors encompassing the pharmaco-dynamic and kinetic profiles. The underexplored assembling of α,α-difluoromethyl-heteroaromatic ketones is herein implemented via a conceptually intuitive Weinreb amide acylative transfer of a putative difluoromethyl-carbanion. To make the strategy productive, we adopted the commercially available TMSCHF2 pronucleophile - characterized by robust chemical stability and manipulability (bp 65 °C) - which upon Lewis-base mediated activation delivers the competent CHF2-nucleophile. The synthetic protocol was carried out on pyrazole- and isoxazole-based scaffolds, and a panel of heteroaryl-DFMKs was consequently developed as potential COX-inhibitors. In this sense, the bioisosterism deducted through docking studies between the widely expressed carboxylic group (in several clinically used COX inhibitors) and the -COCHF2 motif introduced herein supports this rationale. To confirm the docking results, all compounds were tested against both COX-1 and COX-2 enzyme isoforms showing activity in the micromolar range and a good selectivity index (SI). They were also evaluated for their biocompatibility using NIH/3T3 cells to which they did not show any significant toxicity.


Subject(s)
Isoxazoles , Ketones , Mice , Animals , Ketones/chemistry , Cyclooxygenase Inhibitors/chemistry , Pyrazoles/chemistry , Cyclooxygenase 2/metabolism , Cyclooxygenase 2 Inhibitors , Structure-Activity Relationship
14.
Molecules ; 27(3)2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35164399

ABSTRACT

Recently, bimetallic nanoparticles (BMNPs) blending the properties of two metals in one nanostructured system have generated enormous interest due to their potential applications in various fields including biosensing, imaging, nanomedicine, and catalysis. BMNPs have been developed later with respect to the monometallic nanoparticles (MNPs) and their physicochemical and biological properties have not yet been comprehensively explored. The manuscript aims at collecting the main design criteria used to synthetize BMNPs focusing on green route synthesis. The influence of experimental parameters such as temperature, time, reagent concentrations, capping agents on the particle growth and colloidal stability are examined. Finally, an overview of their nanotechnological applications and biological profile are presented.

15.
Molecules ; 26(15)2021 Jul 31.
Article in English | MEDLINE | ID: mdl-34361819

ABSTRACT

One of the main current strategies for cancer treatment is represented by combination chemotherapy. More recently, this strategy shifted to the "hybrid strategy", namely the designing of a new molecular entity containing two or more biologically active molecules and having superior features compared with the individual components. Moreover, the term "hybrid" has further extended to innovative drug delivery systems based on biocompatible nanomaterials and able to deliver one or more drugs to specific tissues or cells. At the same time, there is an increased interest in plant-derived polyphenols used as antitumoral drugs. The present review reports the most recent and intriguing research advances in the development of hybrids based on the polyphenols curcumin and resveratrol, which are known to act as multifunctional agents. We focused on two issues that are particularly interesting for the innovative chemical strategy involved in their development. On one hand, the pharmacophoric groups of these compounds have been used for the synthesis of new hybrid molecules. On the other hand, these polyphenols have been introduced into hybrid nanomaterials based on gold nanoparticles, which have many potential applications for both drug delivery and theranostics in chemotherapy.


Subject(s)
Biological Products/therapeutic use , Curcumin/therapeutic use , Neoplasms/drug therapy , Resveratrol/therapeutic use , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/therapeutic use , Biological Products/chemistry , Curcumin/chemistry , Drug Delivery Systems , Gold/chemistry , Humans , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Resveratrol/chemistry , Stilbenes/chemistry
16.
Bioorg Med Chem Lett ; 49: 128285, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34303813

ABSTRACT

The reaction of potentially N,N,O-tridentate Schiff base ligands, Cl-LH, Br-LH, BrCl-LH and H-LH, with [VIVO(acac)2] in 2:1 ratio in methanol gave the corresponding mononuclear and dinuclear oxidovanadium(IV) complexes, VO(Cl-L)2 (1), VO(Br-L)2 (2), [(BrCl-L)2(H2O)V(µ-O)VO(BrCl-L)2] (3) and [(H-L)2(H2O)V(µ -O)VO(H-L)2] (4), in good yields. The ligands and complexes were fully characterized by elemental analysis and FT-IR spectroscopy. The ligands were also characterized by 1H NMR spectroscopy. The oxidation state of V(IV)O with d1 configuration in all synthesized complexes was confirmed by EPR. Moreover, the structures of 2 and 3 were determined by X-ray diffraction (XRD) analysis which revealed them as mono- and dinuclear vanadium(IV) complexes, respectively, with the ligands coordinated as bidentate chelates. The structure of 3 represents the first example of dinuclear V(IV) complex with O â†’ VIV = O â†’ VIV = O core (Cambridge Structural Database (CSD)​, version 5.42, update of May 2021). The cytotoxicity of ligands and complexes was evaluated towards ovarian (A2780), breast (MCF7) and prostate (PC3) cancer cells at 48 h. While ligands showed modest IC50 values (>42 µM), all complexes turned out to be effective in the range 3.9-17.2 µM. In particular, A2780 and MCF7 cell lines were the most sensitive to the newly synthesized V(IV)O complexes.


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Schiff Bases/pharmacology , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Cell Survival/drug effects , Coordination Complexes/chemical synthesis , Drug Screening Assays, Antitumor , Humans , Ligands , Molecular Structure , Schiff Bases/chemical synthesis , Vanadium/chemistry
17.
Biomolecules ; 11(4)2021 04 19.
Article in English | MEDLINE | ID: mdl-33921886

ABSTRACT

The uncontrolled spread of the COVID-19 pandemic caused by the new coronavirus SARS-CoV-2 during 2020-2021 is one of the most devastating events in the history, with remarkable impacts on the health, economic systems, and habits of the entire world population. While some effective vaccines are nowadays approved and extensively administered, the long-term efficacy and safety of this line of intervention is constantly under debate as coronaviruses rapidly mutate and several SARS-CoV-2 variants have been already identified worldwide. Then, the WHO's main recommendations to prevent severe clinical complications by COVID-19 are still essentially based on social distancing and limitation of human interactions, therefore the identification of new target-based drugs became a priority. Several strategies have been proposed to counteract such viral infection, including the repurposing of FDA already approved for the treatment of HIV, HCV, and EBOLA, inter alia. Among the evaluated compounds, inhibitors of the main protease of the coronavirus (Mpro) are becoming more and more promising candidates. Mpro holds a pivotal role during the onset of the infection and its function is intimately related with the beginning of viral replication. The interruption of its catalytic activity could represent a relevant strategy for the development of anti-coronavirus drugs. SARS-CoV-2 Mpro is a peculiar cysteine protease of the coronavirus family, responsible for the replication and infectivity of the parasite. This review offers a detailed analysis of the repurposed drugs and the newly synthesized molecules developed to date for the treatment of COVID-19 which share the common feature of targeting SARS-CoV-2 Mpro, as well as a brief overview of the main enzymatic and cell-based assays to efficaciously screen such compounds.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Coronavirus 3C Proteases/antagonists & inhibitors , Peptidomimetics/pharmacology , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Small Molecule Libraries/pharmacology , Animals , Antiviral Agents/chemistry , COVID-19/virology , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Drug Discovery , Drug Repositioning , Humans , Molecular Docking Simulation , Peptidomimetics/chemistry , Protease Inhibitors/chemistry , SARS-CoV-2/chemistry , SARS-CoV-2/metabolism , Small Molecule Libraries/chemistry
18.
Dalton Trans ; 50(11): 3990-4007, 2021 Mar 21.
Article in English | MEDLINE | ID: mdl-33650599

ABSTRACT

To investigate the effect of different halogen substituents and leaving groups and the flexibility of ligands on the anticancer activity of copper complexes, sixteen copper(ii) complexes with eight different tridentate Schiff-base ligands containing pyridine and 3,5-halogen-substituted phenol moieties were synthesized and characterized by spectroscopic methods. Four of these complexes were also characterized by X-ray crystallography. The cytotoxicity of the complexes was determined in three different tumor cell lines (i.e. the A2780 ovarian, HCT116 colorectal and MCF7 breast cancer cell line) and in a normal primary fibroblast cell line. Complexes were demonstrated to induce a higher loss of cell viability in the ovarian carcinoma cell line (A2780) with respect to the other two tumor cell lines, and therefore the biological mechanisms underlying this loss of viability were further investigated. Complexes with ligand L1 (containing a 2-pycolylamine-type motif) were more cytotoxic than complexes with L2 (containing a 2-(2-pyridyl)ethylamine-type motif). The loss of cell viability in A2780 tumor cells was observed in the order Cu(Cl2-L1)NO3 > Cu(Cl2-L1)Cl > Cu(Br2-L1)Cl > Cu(BrCl-L1)Cl. All complexes were able to induce reactive oxygen species (ROS) that could be related to the loss of cell viability. Complexes Cu(BrCl-L1)Cl and Cu(Cl2-L1)NO3 were able to promote A2780 cell apoptosis and autophagy and for complex Cu(BrCl-L1)Cl the increase in apoptosis was due to the intrinsic pathway. Cu(Cl2-L1)Cl and Cu(Br2-L1)Cl complexes lead to cellular detachment allowing to correlate with the results of loss of cell viability. Despite the ability of the Cu(BrCl-L1)Cl complex to induce programmed cell death in A2780 cells, its therapeutic window turned out to be low making the Cu(Cl2-L1)NO3 complex the most promising candidate for additional biological applications.


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Copper/pharmacology , Schiff Bases/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Copper/chemistry , Crystallography, X-Ray , Drug Screening Assays, Antitumor , Halogenation , Humans , Ligands , Models, Molecular , Molecular Structure , Schiff Bases/chemistry , Tumor Cells, Cultured
19.
Int J Mol Sci ; 22(3)2021 Jan 30.
Article in English | MEDLINE | ID: mdl-33573283

ABSTRACT

The synthesis of α-fluorinated methyl ketones has always been challenging. New methods based on the homologation chemistry via nucleophilic halocarbenoid transfer, carried out recently in our labs, allowed us to design and synthesize a target-directed dipeptidyl α,α-difluoromethyl ketone (DFMK) 8 as a potential antiviral agent with activity against human coronaviruses. The ability of the newly synthesized compound to inhibit viral replication was evaluated by a viral cytopathic effect (CPE)-based assay performed on MCR5 cells infected with one of the four human coronaviruses associated with respiratory distress, i.e., hCoV-229E, showing antiproliferative activity in the micromolar range (EC50 = 12.9 ± 1.22 µM), with a very low cytotoxicity profile (CC50 = 170 ± 3.79 µM, 307 ± 11.63 µM, and 174 ± 7.6 µM for A549, human embryonic lung fibroblasts (HELFs), and MRC5 cells, respectively). Docking and molecular dynamics simulations studies indicated that 8 efficaciously binds to the intended target hCoV-229E main protease (Mpro). Moreover, due to the high similarity between hCoV-229E Mpro and SARS-CoV-2 Mpro, we also performed the in silico analysis towards the second target, which showed results comparable to those obtained for hCoV-229E Mpro and promising in terms of energy of binding and docking pose.


Subject(s)
Antiviral Agents/chemistry , Coronavirus 229E, Human/metabolism , Dipeptides/chemistry , Ketones/chemistry , A549 Cells , Antiviral Agents/pharmacology , Binding Sites , COVID-19/pathology , COVID-19/virology , Cell Line , Coronavirus M Proteins/chemistry , Coronavirus M Proteins/metabolism , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Thermodynamics , Viral Matrix Proteins/chemistry , Viral Matrix Proteins/metabolism , Virus Replication/drug effects
20.
Molecules ; 25(19)2020 Sep 28.
Article in English | MEDLINE | ID: mdl-32998355

ABSTRACT

A group of triethylphosphine gold(I) and silver(I) complexes, structurally related to auranofin, were prepared and investigated as potential anticancer drug candidates. The antiproliferative properties of these metal compounds were assessed against two leukemia cell lines, i.e., CCRF-CEM and its multidrug-resistant counterpart, CEM/ADR5000. Interestingly, potent cytotoxic effects were disclosed for both series of compounds against leukemia cells, with IC50 values generally falling in the low-micromolar range, the gold derivatives being on the whole more effective than the silver analogues. Some initial structure-function relationships were drawn. Subsequently, the ability of the study compounds to inhibit the three main catalytic activities of the proteasome was investigated. Different patterns of enzyme inhibition emerged for the various metal complexes. Notably, gold compounds were able to inhibit effectively both the trypsin-like and chymotrypsin-like proteasome activities, being less effective toward the caspase-like catalytic activity. In most cases, a significant selectivity of the study compounds toward the proteasome proteolytic activities was detected when compared to other proteases. The implications of the obtained results are discussed.


Subject(s)
Auranofin/pharmacology , Gold/pharmacology , Leukemia/metabolism , Leukemia/pathology , Proteasome Endopeptidase Complex/metabolism , Silver/pharmacology , Ubiquitin/metabolism , Auranofin/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Resistance, Multiple/drug effects , Drug Resistance, Neoplasm/drug effects , Humans , Inhibitory Concentration 50
SELECTION OF CITATIONS
SEARCH DETAIL
...