Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-453287

ABSTRACT

Aging is associated with a reduced magnitude of primary immune responses to vaccination and constriction of immune receptor repertoire diversity. Clinical trials demonstrated high efficacy of mRNA based SARS-CoV-2 vaccines in older adults but concerns about virus variant escape have not been well addressed. We have conducted an in-depth analysis of humoral and cellular immunity against an early-pandemic viral isolate and compared that to the P.1. (Gamma) and B.1.617.2 (Delta) variants in <50 and >55 age cohorts of mRNA vaccine recipients. We have further measured neutralizing antibody titers for B.1.617.1 (Kappa) and B.1.595; a SARS-CoV-2 isolate bearing Spike mutation E484Q. As reported, robust immunity required the second dose of vaccine. Older vaccinees manifested robust cellular immunity against early-pandemic SARS-CoV-2 and more recent variants, which remained statistically comparable to the adult group. The older cohort had lower neutralizing capacity at the first time point following the second dose, but at later time points immunity was indistinguishable between them. While the duration of these immune responses remains to be determined over longer periods of time, these results provide reasons for optimism regarding vaccine protection of older adults against SARS-CoV-2 variants and inform thinking about boost vaccination with variant vaccines. eTOC summaryVaccine responses are often diminished with aging, but we found strong responses to SARS-CoV-2 in older adults following mRNA vaccination. T cell responses were not diminished when confronted by SARS-CoV-2 variants. Neutralizing Ab were reduced but not more than those in adults. Graphical Abstract O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=73 SRC="FIGDIR/small/453287v2_ufig1.gif" ALT="Figure 1"> View larger version (16K): org.highwire.dtl.DTLVardef@1091655org.highwire.dtl.DTLVardef@1996173org.highwire.dtl.DTLVardef@ccf2f9org.highwire.dtl.DTLVardef@163ed22_HPS_FORMAT_FIGEXP M_FIG C_FIG Created with BioRender.com

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21257129

ABSTRACT

Vaccines against SARS-CoV-2 have shown high efficacy, but immunocompromised participants were excluded from controlled clinical trials. We compared immune responses to the Pfizer/BioNTech mRNA vaccine in solid tumor patients (n=53) on active cytotoxic anti-cancer therapy to a control cohort (n=50) as an observational study. Using live SARS-CoV-2 assays, neutralizing antibodies were detected in 67% and 80% of cancer patients after the first and second immunizations, respectively, with a 3-fold increase in median titers after the booster. Similar trends were observed in serum antibodies against the receptor-binding domain (RBD) and S2 regions of Spike protein, and in IFN{gamma}+ Spike-specific T cells. Yet the magnitude of each of these responses was diminished relative to the control cohort. We therefore quantified RBD- and Spike S1-specific memory B cell subsets as predictors of anamnestic responses to additional immunizations. After the second vaccination, Spike-specific plasma cell-biased memory B cells were observed in most cancer patients at levels similar to those of the control cohort after the first immunization. We initiated an interventional phase 1 trial of a third booster shot (NCT04936997); primary outcomes were immune responses with a secondary outcome of safety. After a third immunization, the 20 participants demonstrated an increase in antibody responses, with a median 3-fold increase in virus-neutralizing titers. Yet no improvement was observed in T cell responses at 1 week after the booster immunization. There were mild adverse events, primarily injection site myalgia, with no serious adverse events after a month of follow-up. These results suggest that a third vaccination improves humoral immunity against COVID-19 in cancer patients on active chemotherapy with no severe adverse events.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-21255131

ABSTRACT

Tracking the emergence and spread of SARS-CoV-2 is critical to inform public health interventions. Phylodynamic analyses have quantified SARS-CoV-2 migration on global and local scales1-5, yet they have not been applied to determine transmission dynamics in Canada. We quantified SARS-CoV-2 migration into, within, and out of Canada in the context of COVID-19 travel restrictions. To minimize sampling bias, global sequences were subsampled with probabilities corrected for their countries monthly contribution to global new diagnoses. A time-scaled maximum likelihood tree was used to estimate most likely ancestral geographic locations (country or Canadian province), enabling identification of sublineages, defined as introduction events into Canada resulting in domestic transmission. Of 402 Canadian sublineages identified, the majority likely originated from the USA (54%), followed by Russia (7%), India (6%), Italy (6%), and the UK (5%). International introductions were mostly into Ontario (39%) and Quebec (38%). Among Pango lineages6, B.1 was imported at least 191 separate times from 11 different countries. Introduction rates peaked in late March then diminished but were not eliminated following national interventions including restrictions on non-essential travel. We further identified 1,380 singleton importations, international importations that did not result in further sampled transmission, whereby representation of lineages and location were comparable to sublineages. Although proportion of international transmission decreased over time, this coincided with exponential growth of within-province transmission - in fact, total number of sampled transmission events from international or interprovincial sources increased from winter 2020 into spring 2020 in many provinces. Ontario, Quebec, and British Columbia acted as sources of transmission more than recipients, within the caveat of higher sequence representation. We present strong evidence that international introductions and interprovincial transmission of SARS-CoV-2 contributed to the Canadian COVID-19 burden throughout 2020, despite initial reductions mediated by travel restrictions in 2020. More stringent border controls and quarantine measures may have curtailed introductions of SARS-CoV-2 into Canada and may still be warranted. Significance StatementBy analyzing SARS-CoV-2 genomes from Canada in the context of the global pandemic, we illuminate the extent to which the COVID-19 burden in Canada was perpetuated by ongoing international importations and interprovincial transmission throughout 2020. Although travel restrictions enacted in March 2020 reduced the importation rate and proportion of transmission from abroad across all Canadian provinces, SARS-CoV-2 introductions from the USA, India, Russia, and other nations were detectable through the summer and fall of 2020.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-21251159

ABSTRACT

As of January of 2021, the highly transmissible B.1.1.7 variant of SARS-CoV-2, which was first identified in the United Kingdom (U.K.), has gained a strong foothold across the world. Because of the sudden and rapid rise of B.1.1.7, we investigated the prevalence and growth dynamics of this variant in the United States (U.S.), tracking it back to its early emergence and onward local transmission. We found that the RT-qPCR testing anomaly of S gene target failure (SGTF), first observed in the U.K., was a reliable proxy for B.1.1.7 detection. We sequenced 212 B.1.1.7 SARS-CoV-2 genomes collected from testing facilities in the U.S. from December 2020 to January 2021. We found that while the fraction of B.1.1.7 among SGTF samples varied by state, detection of the variant increased at a logistic rate similar to those observed elsewhere, with a doubling rate of a little over a week and an increased transmission rate of 35-45%. By performing time-aware Bayesian phylodynamic analyses, we revealed several independent introductions of B.1.1.7 into the U.S. as early as late November 2020, with onward community transmission enabling the variant to spread to at least 30 states as of January 2021. Our study shows that the U.S. is on a similar trajectory as other countries where B.1.1.7 rapidly became the dominant SARS-CoV-2 variant, requiring immediate and decisive action to minimize COVID-19 morbidity and mortality.

5.
Preprint in English | bioRxiv | ID: ppbiorxiv-392126

ABSTRACT

Understanding when SARS-CoV-2 emerged is critical to evaluating our current approach to monitoring novel zoonotic pathogens and understanding the failure of early containment and mitigation efforts for COVID-19. We employed a coalescent framework to combine retrospective molecular clock inference with forward epidemiological simulations to determine how long SARS-CoV-2 could have circulated prior to the time of the most recent common ancestor. Our results define the period between mid-October and mid-November 2019 as the plausible interval when the first case of SARS-CoV-2 emerged in Hubei province. By characterizing the likely dynamics of the virus before it was discovered, we show that over two-thirds of SARS-CoV-2-like zoonotic events would be self-limited, dying out without igniting a pandemic. Our findings highlight the shortcomings of zoonosis surveillance approaches for detecting highly contagious pathogens with moderate mortality rates.

6.
Preprint in English | bioRxiv | ID: ppbiorxiv-165464

ABSTRACT

Spatiotemporal bias in genome sequence sampling can severely confound phylogeographic inference based on discrete trait ancestral reconstruction. This has impeded our ability to accurately track the emergence and spread of SARS-CoV-2, the virus responsible for the COVID-19 pandemic. Despite the availability of unprecedented numbers of SARS-CoV-2 genomes on a global scale, evolutionary reconstructions are hindered by the slow accumulation of sequence divergence over its relatively short transmission history. When confronted with these issues, incorporating additional contextual data may critically inform phylodynamic reconstructions. Here, we present a new approach to integrate individual travel history data in Bayesian phylogeographic inference and apply it to the early spread of SARS-CoV-2, while also including global air transportation data. We demonstrate that including travel history data for each SARS-CoV-2 genome yields more realistic reconstructions of virus spread, particularly when travelers from undersampled locations are included to mitigate sampling bias. We further explore methods to ameliorate the impact of sampling bias by augmenting the phylogeographic analysis with lineages from undersampled locations in the analyses. Our reconstructions reinforce specific transmission hypotheses suggested by the inclusion of travel history data, but also suggest alternative routes of virus migration that are plausible within the epidemiological context but are not apparent with current sampling efforts. Although further research is needed to fully examine the performance of our travel-aware phylogeographic analyses with unsampled diversity and to further improve them, they represent multiple new avenues for directly addressing the colossal issue of sample bias in phylogeographic inference.

7.
Preprint in English | bioRxiv | ID: ppbiorxiv-109322

ABSTRACT

Accurate understanding of the global spread of emerging viruses is critically important for public health response and for anticipating and preventing future outbreaks. Here, we elucidate when, where and how the earliest sustained SARS-CoV-2 transmission networks became established in Europe and the United States (US). Our results refute prior findings erroneously linking cases in January 2020 with outbreaks that occurred weeks later. Instead, rapid interventions successfully prevented onward transmission of those early cases in Germany and Washington State. Other, later introductions of the virus from China to both Italy and Washington State founded the earliest sustained European and US transmission networks. Our analyses reveal an extended period of missed opportunity when intensive testing and contact tracing could have prevented SARS-CoV-2 from becoming established in the US and Europe.

8.
Preprint in English | medRxiv | ID: ppmedrxiv-20095935

ABSTRACT

In December of 2019, a novel coronavirus, SARS-CoV-2, emerged in the city of Wuhan, China causing severe morbidity and mortality. Since then, the virus has swept across the globe causing millions of confirmed infections and hundreds of thousands of deaths. To better understand the nature of the pandemic and the introduction and spread of the virus in Arizona, we sequenced viral genomes from clinical samples tested at the TGen North Clinical Laboratory, provided to us by the Arizona Department of Health Services, and at Arizona State University and the University of Arizona, collected as part of community surveillance projects. Phylogenetic analysis of 79 genomes we generated from across Arizona revealed a minimum of 9 distinct introductions throughout February and March. We show that >80% of our sequences descend from clades that were initially circulating widely in Europe but have since dominated the outbreak in the United States. In addition, we show that the first reported case of community transmission in Arizona descended from the Washington state outbreak that was discovered in late February. Notably, none of the observed transmission clusters are epidemiologically linked to the original travel-related cases in the state, suggesting successful early isolation and quarantine. Finally, we use molecular clock analyses to demonstrate a lack of identifiable, widespread cryptic transmission in Arizona prior to the middle of February 2020.

SELECTION OF CITATIONS
SEARCH DETAIL
...