Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 162
Filter
Add more filters










Publication year range
1.
J Chem Theory Comput ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856017

ABSTRACT

The structure of oxide-supported metal nanoclusters plays an essential role in their sharply enhanced catalytic activity over that of bulk metals. Simulations provide the atomic-scale resolution needed to understand these systems. However, the sensitive mix of metal-metal and metal-support interactions, which govern their structure, puts stringent requirements on the method used, requiring calculations beyond standard density functional theory (DFT). The method of choice is coupled cluster theory [specifically CCSD(T)], but its computational cost has so far prevented its application to these systems. In this work, we showcase two approaches to make CCSD(T) accuracy readily achievable in oxide-supported nanoclusters. First, we leverage the SKZCAM protocol to provide the first benchmarks of oxide-supported nanoclusters, revealing that it is specifically metal-metal interactions that are challenging to capture with DFT. Second, we propose a CCSD(T) correction (ΔCC) to the metal-metal interaction errors in DFT, reaching accuracy comparable to that of the SKZCAM protocol at significantly lower cost. This approach forges a path toward studying larger systems at reliable accuracy, which we highlight by identifying a ground-state structure in agreement with experiments for Au20 on MgO, a challenging system where DFT models have yielded conflicting predictions.

2.
J Phys Chem Lett ; 15(23): 6081-6091, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38820256

ABSTRACT

The extent of ion pairing in solution is an important phenomenon to rationalize transport and thermodynamic properties of electrolytes. A fundamental measure of this pairing is the potential of mean force (PMF) between solvated ions. The relative stabilities of the paired and solvent shared states in the PMF and the barrier between them are highly sensitive to the underlying potential energy surface. However, direct application of accurate electronic structure methods is challenging, since long simulations are required. We develop wave function based machine learning potentials with the random phase approximation (RPA) and second order Møller-Plesset (MP2) perturbation theory for the prototypical system of Na and Cl ions in water. We show both methods in agreement, predicting the paired and solvent shared states to have similar energies (within 0.2 kcal/mol). We also provide the same benchmarks for different DFT functionals as well as insight into the PMF based on simple analyses of the interactions in the system.

3.
Nano Lett ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38592099

ABSTRACT

The nature of ion-ion interactions in electrolytes confined to nanoscale pores has important implications for energy storage and separation technologies. However, the physical effects dictating the structure of nanoconfined electrolytes remain debated. Here we employ machine-learning-based molecular dynamics simulations to investigate ion-ion interactions with density functional theory level accuracy in a prototypical confined electrolyte, aqueous NaCl within graphene slit pores. We find that the free energy of ion pairing in highly confined electrolytes deviates substantially from that in bulk solutions, observing a decrease in contact ion pairing but an increase in solvent-separated ion pairing. These changes arise from an interplay of ion solvation effects and graphene's electronic structure. Notably, the behavior observed from our first-principles-level simulations is not reproduced even qualitatively with the classical force fields conventionally used to model these systems. The insight provided in this work opens new avenues for predicting and controlling the structure of nanoconfined electrolytes.

7.
Nat Chem ; 16(5): 749-754, 2024 May.
Article in English | MEDLINE | ID: mdl-38263384

ABSTRACT

Single-atom alloys have recently emerged as highly active and selective alloy catalysts. Unlike pure metals, single-atom alloys escape the well-established conceptual framework developed nearly three decades ago for predicting catalytic performance. Although this offers the opportunity to explore so far unattainable chemistries, this leaves us without a simple guide for the design of single-atom alloys able to catalyse targeted reactions. Here, based on thousands of density functional theory calculations, we reveal a 10-electron count rule for the binding of adsorbates on the dopant atoms, usually the active sites, of single-atom alloy surfaces. A simple molecular orbital approach rationalizes this rule and the nature of the adsorbate-dopant interaction. In addition, our intuitive model can accelerate the rational design of single-atom alloy catalysts. Indeed, we illustrate how the unique insights provided by the electron count rule help identify the most promising dopant for an industrially relevant hydrogenation reaction, thereby reducing the number of potential materials by more than one order of magnitude.

8.
Faraday Discuss ; 249(0): 210-228, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-37791990

ABSTRACT

Nucleation in small volumes of water has garnered renewed interest due to the relevance of pore condensation and freezing under conditions of low partial pressures of water, such as in the upper troposphere. Molecular simulations can in principle provide insight on this process at the molecular scale that is challenging to achieve experimentally. However, there are discrepancies in the literature as to whether the rate in confined systems is enhanced or suppressed relative to bulk water at the same temperature and pressure. In this study, we investigate the extent to which the size of the critical nucleus and the rate at which it grows in thin films of water are affected by the thickness of the film. Our results suggest that nucleation remains bulk-like in films that are barely large enough accommodate a critical nucleus. This conclusion seems robust to the presence of physical confining boundaries. We also discuss the difficulties in unambiguously determining homogeneous nucleation rates in nanoscale systems, owing to the challenges in defining the volume. Our results suggest any impact on a film's thickness on the rate is largely inconsequential for present day experiments.

9.
Faraday Discuss ; 249(0): 50-68, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-37799072

ABSTRACT

Vibrational spectroscopy is a powerful approach to visualising interfacial phenomena. However, extracting structural and dynamical information from vibrational spectra is a challenge that requires first-principles simulations, including non-Condon and quantum nuclear effects. We address this challenge by developing a machine-learning enhanced first-principles framework to speed up predictive modelling of infrared, Raman, and sum-frequency generation spectra. Our approach uses machine learning potentials that encode quantum nuclear effects to generate quantum trajectories using simple molecular dynamics efficiently. In addition, we reformulate bulk and interfacial selection rules to express them unambiguously in terms of the derivatives of polarisation and polarisabilities of the whole system and predict these derivatives efficiently using fully-differentiable machine learning models of dielectric response tensors. We demonstrate our framework's performance by predicting the IR, Raman, and sum-frequency generation spectra of liquid water, ice and the water-air interface by achieving near quantitative agreement with experiments at nearly the same computational efficiency as pure classical methods. Finally, to aid the experimental discovery of new phases of nanoconfined water, we predict the temperature-dependent vibrational spectra of monolayer water across the solid-hexatic-liquid phases transition.

10.
J Chem Theory Comput ; 20(4): 1612-1624, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-37916678

ABSTRACT

The aggregation of clay particles is an everyday phenomenon of scientific and industrial relevance. However, it is a complex multiscale process that depends delicately on the nature of the particle-particle and particle-solvent interactions. Toward understanding how to control such phenomena, a multiscale computational approach is developed, building from molecular simulations conducted at atomic resolution to calculate the potential of mean force (PMF) profiles in both pure and saline water environments. We document how it is possible to use such a model to develop a fundamental understanding concerning the mechanism of particle aggregation. For example, using molecular dynamics simulations conducted at the mesoscale in implicit solvents, it is possible to quantify the size and shape of clay aggregates as a function of system conditions. The approach is used to emphasize the role of salt concentration, which directly affects the potentials of the mean forces between kaolinite particles. While particle agglomeration in pure water yields large aggregates, the presence of sodium chloride in the aqueous brine leads instead to a large number of small aggregates. These results are consistent with macroscopic experimental observations, suggesting that the simulation protocol developed could be relevant for preventing pore blocking in heterogeneous porous matrixes.

11.
J Am Chem Soc ; 145(46): 25372-25381, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37948071

ABSTRACT

The adsorption energy of a molecule onto the surface of a material underpins a wide array of applications, spanning heterogeneous catalysis, gas storage, and many more. It is the key quantity where experimental measurements and theoretical calculations meet, with agreement being necessary for reliable predictions of chemical reaction rates and mechanisms. The prototypical molecule-surface system is CO adsorbed on MgO, but despite intense scrutiny from theory and experiment, there is still no consensus on its adsorption energy. In particular, the large cost of accurate many-body methods makes reaching converged theoretical estimates difficult, generating a wide range of values. In this work, we address this challenge, leveraging the latest advances in diffusion Monte Carlo (DMC) and coupled cluster with single, double, and perturbative triple excitations [CCSD(T)] to obtain accurate predictions for CO on MgO. These reliable theoretical estimates allow us to evaluate the inconsistencies in published temperature-programed desorption experiments, revealing that they arise from variations in employed pre-exponential factors. Utilizing this insight, we derive new experimental estimates of the (electronic) adsorption energy with a (more) precise pre-exponential factor. As a culmination of all of this effort, we are able to reach a consensus between multiple theoretical calculations and multiple experiments for the first time. In addition, we show that our recently developed cluster-based CCSD(T) approach provides a low-cost route toward achieving accurate adsorption energies. This sets the stage for affordable and reliable theoretical predictions of chemical reactions on surfaces to guide the realization of new catalysts and gas storage materials.

13.
Nano Lett ; 23(11): 4793-4799, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37195627

ABSTRACT

Solvents are increasingly known to influence chemical reactivity. However, the microscopic origin of solvent effects is scarcely understood, particularly at the individual molecule level. To shed light on this, we explored a well-defined model system of water (D2O) and carbon monoxide on a single-crystal copper surface with time-lapsed low-temperature scanning tunneling microscopy (STM) and ab initio calculations. Through detailed measurements on a time scale of minutes to hours at the limit of single-molecule solvation, we find that at cryogenic temperatures CO-D2O complexes are more mobile than individual CO or water molecules. We also obtain detailed mechanistic insights into the motion of the complex. In diffusion-limited surface reactions, such a solvent-triggered increase in mobility would substantially increase the reaction yield.

14.
Phys Rev Lett ; 130(10): 106202, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36962030

ABSTRACT

Understanding the molecular and electronic structure of solvated ions at surfaces requires an analysis of the interactions between the surface, the ions, and the solvent environment on equal footing. Here, we tackle this challenge by exploring the initial stages of Cs^{+} hydration on a Cu(111) surface by combining experiment and theory. Remarkably, we observe "inside-out" solvation of Cs^{+} ions, i.e., their preferential location at the perimeter of the water clusters on the metal surface. In addition, water-Cs complexes containing multiple Cs^{+} ions are observed to form at these surfaces. Established models based on maximum ion-water coordination and conventional solvation models cannot account for this situation, and the complex interplay of microscopic interactions is the key to a fundamental understanding.

15.
Science ; 379(6631): 474-478, 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36730416

ABSTRACT

Amorphous ices govern a range of cosmological processes and are potentially key materials for explaining the anomalies of liquid water. A substantial density gap between low-density and high-density amorphous ice with liquid water in the middle is a cornerstone of our current understanding of water. However, we show that ball milling "ordinary" ice Ih at low temperature gives a structurally distinct medium-density amorphous ice (MDA) within this density gap. These results raise the possibility that MDA is the true glassy state of liquid water or alternatively a heavily sheared crystalline state. Notably, the compression of MDA at low temperature leads to a sharp increase of its recrystallization enthalpy, highlighting that H2O can be a high-energy geophysical material.

16.
Nano Lett ; 23(2): 580-587, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36626824

ABSTRACT

Friction at water-carbon interfaces remains a major puzzle with theories and simulations unable to explain experimental trends in nanoscale waterflow. A recent theoretical framework─quantum friction (QF)─proposes to resolve these experimental observations by considering nonadiabatic coupling between dielectric fluctuations in water and graphitic surfaces. Here, using a classical model that enables fine-tuning of the solid's dielectric spectrum, we provide evidence from simulations in general support of QF. In particular, as features in the solid's dielectric spectrum begin to overlap with water's librational and Debye modes, we find an increase in friction in line with that proposed by QF. At the microscopic level, we find that this contribution to friction manifests more distinctly in the dynamics of the solid's charge density than that of water. Our findings suggest that experimental signatures of QF may be more pronounced in the solid's response rather than liquid water's.

17.
J Chem Phys ; 157(13): 134701, 2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36208996

ABSTRACT

Ice is one of the most important and interesting molecular crystals, exhibiting a rich and evolving phase diagram. Recent discoveries mean that there are now 20 distinct polymorphs; a structural diversity that arises from a delicate interplay of hydrogen bonding and van der Waals dispersion forces. This wealth of structures provides a stern test of electronic structure theories, with Density Functional Theory (DFT) often not able to accurately characterize the relative energies of the various ice polymorphs. Thanks to recent advances that enable the accurate and efficient treatment of molecular crystals with Diffusion Monte Carlo (DMC), we present here the DMC-ICE13 dataset; a dataset of lattice energies of 13 ice polymorphs. This dataset encompasses the full structural complexity found in the ambient and high-pressure molecular ice polymorphs, and when experimental reference energies are available, our DMC results deliver sub-chemical accuracy. Using this dataset, we then perform an extensive benchmark of a broad range of DFT functionals. Of the functionals considered, revPBE-D3 and RSCAN reproduce reference absolute lattice energies with the smallest error, while optB86b-vdW and SCAN+rVV10 have the best performance on the relative lattice energies. Our results suggest that a single functional achieving reliable performance for all phases is still missing, and that care is needed in the selection of the most appropriate functional for the desired application. The insights obtained here may also be relevant to liquid water and other hydrogen-bonded and dispersion-bonded molecular crystals.

18.
Nature ; 609(7927): 512-516, 2022 09.
Article in English | MEDLINE | ID: mdl-36104556

ABSTRACT

Water in nanoscale cavities is ubiquitous and of central importance to everyday phenomena in geology and biology. However, the properties of nanoscale water can be substantially different from those of bulk water, as shown, for example, by the anomalously low dielectric constant of water in nanochannels1, near frictionless water flow2 or the possible existence of a square ice phase3. Such properties suggest that nanoconfined water could be engineered for technological applications in nanofluidics4, electrolyte materials5 and water desalination6. Unfortunately, challenges in experimentally characterizing water at the nanoscale and the high cost of first-principles simulations have prevented the molecular-level understanding required to control the behaviour of water. Here we combine a range of computational approaches to enable a first-principles-level investigation of a single layer of water within a graphene-like channel. We find that monolayer water exhibits surprisingly rich and diverse phase behaviour that is highly sensitive to temperature and the van der Waals pressure acting within the nanochannel. In addition to multiple molecular phases with melting temperatures varying non-monotonically by more than 400 kelvins with pressure, we predict a hexatic phase, which is an intermediate between a solid and a liquid, and a superionic phase with a high electrical conductivity exceeding that of battery materials. Notably, this suggests that nanoconfinement could be a promising route towards superionic behaviour under easily accessible conditions.

19.
J Phys Chem Lett ; 13(31): 7314-7319, 2022 Aug 11.
Article in English | MEDLINE | ID: mdl-35917448

ABSTRACT

Single-atom alloy catalysts combine catalytically active metal atoms, present as dopants, with the selectivity of coinage metal hosts. Determining whether adsorbates stick at the dopant or spill over onto the host is key to understanding catalytic mechanisms on these materials. Despite a growing body of work, simple descriptors for the prediction of spillover energies (SOEs), i.e., the relative stability of an adsorbate on the dopant versus the host site, are not yet available. Using Density Functional Theory (DFT) calculations on a large set of adsorbates, we identify the dopant charge and the SOE of carbon as suitable descriptors. Combining them into a linear surrogate model, we can reproduce DFT-computed SOEs within 0.06 eV mean absolute error. More importantly, our work provides an intuitive theoretical framework, based on the concepts of electrostatic interactions and covalency, that explains SOE trends and can guide the rational design of future single-atom alloy catalysts.

20.
J Phys Chem Lett ; 13(27): 6316-6322, 2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35792939

ABSTRACT

Dicarbonyl species are ubiquitous on Rh/oxide catalysts and are known to form on Rh+ centers. However, dicarbonyl species have never been directly observed on single-atom alloys (SAAs) where the active site is metallic. Herein, using surface science and theoretical modeling, we provide evidence of dicarbonyl species at isolated Rh sites on a RhCu(100) SAA. This approach not only enables us to directly visualize dicarbonyl species at Rh sites but also demonstrates that the transition between the mono- and dicarbonyl configuration can be achieved by changing surface temperature and CO pressure. Density functional theory calculations further support the mono- and dicarbonyl assignments and provide evidence that these species should be stable on other SAA combinations. Together, these results provide a picture of the structure and energetics of both the mono- and dicarbonyl configurations on the RhCu(100) SAA surface and should aid with IR assignments on SAA nanoparticle catalysts.


Subject(s)
Alloys , Catalysis
SELECTION OF CITATIONS
SEARCH DETAIL
...