Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharm Biopharm ; 142: 258-264, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31276759

ABSTRACT

The effect of drug load and digestion on the solubilization and absorption of fenofibrate in self-nanoemulsifying drug delivery system (SNEDDS) was assessed in a pharmacokinetic study in rats and in an in vitro lipolysis model. SNEDDS containing fenofibrate at 75% of equilibrium solubility (Seq), a super-saturated SNEDDS (super-SNEDDS) containing fenofibrate at 150% of Seq and a super-SNEDDS suspension containing fenofibrate at 100% of Seq and an additional 50% Seq fenofibrate suspended (150% of Seq in total) were used. To assess the effect of lipid digestion on fenofibrate absorption in rats and fenofibrate solubilization during in vitro lipolysis, the lipase inhibitor orlistat was added at 1% (w/w) to the SNEDDS, resulting in six different SNEDDS: SNEDDS, super-SNEDDS and super-SNEDDS suspension with and without orlistat 1% (w/w). In vivo, super-SNEDDS had a higher Cmax and AUC0-30h compared to SNEDDS and super-SNEDDS suspension, both with and without orlistat. While orlistat did not affect fenofibrate absorption in SNEDDS and super-SNEDDS, an increase of Tmax and AUC0-30h for super-SNEDDS suspension was found when orlistat was present. During in vitro lipolysis, the addition of orlistat decreased digestion and lowered drug precipitation. Super-SNEDDS showed significantly increased absorption in rats compared to SNEDDS and super-SNEDDS suspension and the inhibition of digestion resulted in prolonged and increased absorption for the super-SNEDDS suspension.


Subject(s)
Fenofibrate/administration & dosage , Fenofibrate/metabolism , Administration, Oral , Animals , Drug Delivery Systems/methods , Emulsions/administration & dosage , Emulsions/pharmacokinetics , Intestinal Absorption/drug effects , Lipase/metabolism , Lipolysis/drug effects , Male , Nanoparticles/administration & dosage , Nanoparticles/metabolism , Rats , Rats, Sprague-Dawley , Solubility/drug effects , Suspensions/administration & dosage , Suspensions/pharmacokinetics
2.
Sci Rep ; 8(1): 6327, 2018 04 20.
Article in English | MEDLINE | ID: mdl-29679078

ABSTRACT

The demand for highly efficient macromolecular drugs, used in the treatment of many severe diseases, is continuously increasing. However, the hydrophilic character and large molecular size of these drugs significantly limit their ability to permeate across cellular membranes and thus impede the drugs in reaching their target sites in the body. Cell-penetrating peptides (CPP) have gained attention as promising drug excipients, since they can facilitate drug permeation across cell membranes constituting a major biological barrier. Fluorophores are frequently covalently conjugated to CPPs to improve detection, however, the ensuing change in physico-chemical properties of the CPPs may alter their biological properties. With complementary biophysical techniques, we show that the mode of biomembrane interaction may change considerably upon labeling of the CPP penetratin (PEN) with a fluorophore. Fluorophore-PEN conjugates display altered modes of membrane interaction with increased insertion into the core of model cell membranes thereby exerting membrane-thinning effects. This is in contrast to PEN, which localizes along the head groups of the lipid bilayer, without affecting the thickness of the lipid tails. Particularly high membrane disturbance is observed for the two most hydrophobic PEN conjugates; rhodamine B or 1-pyrene butyric acid, as compared to the four other tested fluorophore-PEN conjugates.


Subject(s)
Cell Membrane Permeability/drug effects , Cell-Penetrating Peptides/metabolism , Fluorescent Dyes/chemistry , Amino Acid Sequence , Carrier Proteins/metabolism , Cell Membrane/drug effects , Cell Membrane/metabolism , Hydrophobic and Hydrophilic Interactions , Ionophores/metabolism , Lipid Bilayers/chemistry , Rhodamines
3.
Pharm Res ; 34(5): 1037-1052, 2017 05.
Article in English | MEDLINE | ID: mdl-28004318

ABSTRACT

PURPOSE: A 3D printer was used to realise compartmental dosage forms containing multiple active pharmaceutical ingredient (API) formulations. This work demonstrates the microstructural characterisation of 3D printed solid dosage forms using X-ray computed microtomography (XµCT) and terahertz pulsed imaging (TPI). METHODS: Printing was performed with either polyvinyl alcohol (PVA) or polylactic acid (PLA). The structures were examined by XµCT and TPI. Liquid self-nanoemulsifying drug delivery system (SNEDDS) formulations containing saquinavir and halofantrine were incorporated into the 3D printed compartmentalised structures and in vitro drug release determined. RESULTS: A clear difference in terms of pore structure between PVA and PLA prints was observed by extracting the porosity (5.5% for PVA and 0.2% for PLA prints), pore length and pore volume from the XµCT data. The print resolution and accuracy was characterised by XµCT and TPI on the basis of the computer-aided design (CAD) models of the dosage form (compartmentalised PVA structures were 7.5 ± 0.75% larger than designed; n = 3). CONCLUSIONS: The 3D printer can reproduce specific structures very accurately, whereas the 3D prints can deviate from the designed model. The microstructural information extracted by XµCT and TPI will assist to gain a better understanding about the performance of 3D printed dosage forms.


Subject(s)
Pharmaceutical Preparations/chemistry , Polyesters/chemistry , Polyvinyl Alcohol/chemistry , Chemistry, Pharmaceutical/methods , Computer-Aided Design , Dosage Forms , Drug Delivery Systems/methods , Drug Liberation , Phenanthrenes/chemistry , Porosity , Printing/methods , Printing, Three-Dimensional , Technology, Pharmaceutical/methods , Terahertz Imaging/methods , X-Ray Microtomography/methods , X-Rays
4.
AAPS J ; 18(1): 180-6, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26486790

ABSTRACT

A super-saturated self-nanoemulsifying drug delivery system (super-SNEDDS), containing the poorly water-soluble drug halofantrine (Hf) at 150% of equilibrium solubility (S eq), was compared in vitro and in vivo with a conventional SNEDDS (75% of S eq) with respect to bioavailability and digestibility. Further, the effect of digestion on oral absorption of Hf from SNEDDS and super-SNEDDS was assessed by incorporation of the lipase inhibitor tetrahydrolipstatin (orlistat) into the SNEDDS. The SNEDDS contained soybean oil/Maisine 34-I (1:1), Kolliphor RH40, and ethanol at a ratio of 55:35:10, w/w percent. For the dynamic in vitro lipolysis, the precipitation of Hf at 60 min was significantly larger for the super-SNEDDS (66.8 ± 16.4%) than for the SNEDDS (18.5 ± 9.2%). The inhibition of the in vitro digestion by orlistat (1% (w/w)) lowered drug precipitation significantly for both the super-SNEDDS (36.8 ± 1.7%) and the SNEDDS (3.9 ± 0.7%). In the in vivo studies, the super-SNEDDS concept proved valid in a rat model with a significantly larger C max for the super-SNEDDS (964 ± 167 ng/mL) than for the SNEDDS (506 ± 112 ng/mL). The bioavailability of Hf dosed in super-SNEDDS (32.9 ± 3.6%) and SNEDDS (22.5 ± 6.3%) did not change significantly with co-administration of orlistat (45.5 ± 7.3% and 21.9 ± 6.5%, respectively). However, the pharmacokinetic parameters changed; the t max of the super-SNEDDS (1.3 ± 0.1 h) and SNEDDS (2.8 ± 1.2 h) were significantly lower when dosed with orlistat (6.0 ± 1.3 and 6.3 ± 1.2 h, respectively). These findings suggest that the role of lipid digestion for the absorption of drugs from SNEDDS may be less important than previously thought.


Subject(s)
Antimalarials/administration & dosage , Antimalarials/pharmacokinetics , Phenanthrenes/administration & dosage , Phenanthrenes/pharmacokinetics , Animals , Biological Availability , Chemistry, Pharmaceutical , Drug Delivery Systems , Drug Interactions , Emulsions , Enzyme Inhibitors/pharmacokinetics , Excipients , Intestinal Absorption , Lactones/pharmacokinetics , Lipolysis , Male , Orlistat , Rats , Rats, Sprague-Dawley , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...