Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
medRxiv ; 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38585791

ABSTRACT

Background: Language and the ability to communicate effectively are key factors in mental health and well-being. Despite this critical importance, research on language is limited by the lack of a scalable phenotyping toolkit. Methods: Here, we describe and showcase Lingo - a flexible online battery of language and nonverbal reasoning skills based on seven widely used tasks (COWAT, picture narration, vocal rhythm entrainment, rapid automatized naming, following directions, sentence repetition, and nonverbal reasoning). The current version of Lingo takes approximately 30 minutes to complete, is entirely open source, and allows for a wide variety of performance metrics to be extracted. We asked > 1,300 individuals from multiple samples to complete Lingo, then investigated the validity and utility of the resulting data. Results: We conducted an exploratory factor analysis across 14 features derived from the seven assessments, identifying five factors. Four of the five factors showed acceptable test-retest reliability (Pearson's R > 0.7). Factor 2 showed the highest reliability (Pearson's R = 0.95) and loaded primarily on sentence repetition task performance. We validated Lingo with objective measures of language ability by comparing performance to gold-standard assessments: CELF-5 and the VABS-3. Factor 2 was significantly associated with the CELF-5 "core language ability" scale (Pearson's R = 0.77, p-value < 0.05) and the VABS-3 "communication" scale (Pearson's R = 0.74, p-value < 0.05). Factor 2 was positively associated with phenotypic and genetic measures of socieconomic status. Interestingly, we found the parents of children with language impairments had lower Factor 2 scores (p-value < 0.01). Finally, we found Lingo factor scores were significantly predictive of numerous psychiatric and neurodevelopmental conditions. Conclusions: Together, these analyses support Lingo as a powerful platform for scalable deep phenotyping of language and other cognitive abilities. Additionally, exploratory analyses provide supporting evidence for the heritability of language ability and the complex relationship between mental health and language.

2.
Biol Psychiatry Glob Open Sci ; 4(2): 100291, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38425476

ABSTRACT

Background: Gender-diverse individuals are at increased risk for mental health problems, but it is unclear whether this is due to shared environmental or genetic factors. Methods: In two SPARK samples, we tested for associations of 16 polygenic scores (PGSs) with quantitative measures of gender diversity and mental health. In study 1, 639 independent adults (59% autistic) reported their mental health with the Adult Self-Report and their gender diversity with the Gender Self-Report (GSR). The GSR has 2 dimensions: binary (degree of identification with the gender opposite that implied by sex designated at birth) and nonbinary (degree of identification with a gender that is neither male nor female). In study 2 (N = 5165), we used a categorical measure of gender identity. Results: In study 1, neuropsychiatric PGSs were positively associated with Adult Self-Report scores: externalizing was positively associated with the attention-deficit/hyperactivity disorder PGS (ß = 0.10 [0.03-0.17]), and internalizing was positively associated with the PGSs for depression (ß = 0.07 [0-0.14]) and neuroticism (ß = 0.10 [0.03-0.17]). Interestingly, GSR scores were not significantly associated with any neuropsychiatric PGS. However, GSR nonbinary was positively associated with the cognitive performance PGS (ß = 0.11 [0.05-0.18]), with the effect size comparable in magnitude to the associations of the neuropsychiatric PGSs with the Adult Self-Report. Additionally, GSR binary was positively associated with the nonheterosexual sexual behavior PGS (ß = 0.07 [0-0.14]). In study 2, the cognitive performance PGS effect replicated; transgender and nonbinary individuals had higher PGSs (t316 = 4.16). Conclusions: We showed that while gender diversity is phenotypically positively associated with mental health problems, the strongest PGS associations with gender diversity were with the cognitive performance PGS, not the neuropsychiatric PGSs.


This research explores the connection between gender diversity, mental health, and genetic factors. It reveals that gender-diverse individuals often experience more mental health issues. Interestingly, rather than finding evidence linking these mental health challenges to genetic risk factors, the study discovered a replicable positive correlation between gender diversity and genetic markers for higher cognitive performance. This suggests that gender-diverse individuals typically have more of these cognitive performance gene variants. Finally, the study presents some early evidence suggesting that interactions between the environment (e.g., stigma) and genetic risk explain some of the elevated risk to mental health in gender-diverse individuals.

3.
Nat Commun ; 15(1): 779, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38278804

ABSTRACT

Neuronal activity-dependent transcription directs molecular processes that regulate synaptic plasticity, brain circuit development, behavioral adaptation, and long-term memory. Single cell RNA-sequencing technologies (scRNAseq) are rapidly developing and allow for the interrogation of activity-dependent transcription at cellular resolution. Here, we present NEUROeSTIMator, a deep learning model that integrates transcriptomic signals to estimate neuronal activation in a way that we demonstrate is associated with Patch-seq electrophysiological features and that is robust against differences in species, cell type, and brain region. We demonstrate this method's ability to accurately detect neuronal activity in previously published studies of single cell activity-induced gene expression. Further, we applied our model in a spatial transcriptomic study to identify unique patterns of learning-induced activity across different brain regions in male mice. Altogether, our findings establish NEUROeSTIMator as a powerful and broadly applicable tool for measuring neuronal activation, whether as a critical covariate or a primary readout of interest.


Subject(s)
Deep Learning , Male , Mice , Animals , Neuronal Plasticity/physiology , Neurons/metabolism , Brain/physiology , Gene Expression Profiling
4.
J Am Med Inform Assoc ; 31(3): 720-726, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38102790

ABSTRACT

IMPORTANCE: This manuscript will be of interest to most Clinical and Translational Science Awards (CTSA) as they retool for the increasing emphasis on translational science from translational research. This effort is an extension of the EDW4R work that most CTSAs have done to deploy infrastructure and tools for researchers to access clinical data. OBJECTIVES: The Iowa Health Data Resource (IHDR) is a strategic investment made by the University of Iowa to improve access to real-world health data. The goals of IHDR are to improve the speed of translational health research, to boost interdisciplinary collaboration, and to improve literacy about health data. The first objective toward this larger goal was to address gaps in data access, data literacy, lack of computational environments for processing Personal Health Information (PHI) and the lack of processes and expertise for creating transformative datasets. METHODS: A three-pronged approach was taken to address the objective. The approach involves integration of an intercollegiate team of non-informatics faculty and staff, a data enclave for secure patient data analyses, and novel comprehensive datasets. RESULTS: To date, all five of the health science colleges (dentistry, medicine, nursing, pharmacy, and public health) have had at least one staff and one faculty member complete the two-month experiential learning curriculum. Over the first two years of this project, nine cohorts totaling 36 data liaisons have been trained, including 18 faculty and 18 staff. IHDR data enclave eliminated the need to duplicate computational infrastructure inside the hospital firewall which reduced infrastructure, hardware and human resource costs while leveraging the existing expertise embedded in the university research computing team. The creation of a process to develop and implement transformative datasets has resulted in the creation of seven domain specific datasets to date. CONCLUSION: The combination of people, process, and technology facilitates collaboration and interdisciplinary research in a secure environment using curated data sets. While other organizations have implemented individual components to address EDW4R operational demands, the IHDR combines multiple resources into a novel, comprehensive ecosystem IHDR enables scientists to use analysis tools with electronic patient data to accelerate time to science.


Subject(s)
Health Resources , Translational Research, Biomedical , Humans , Iowa
5.
bioRxiv ; 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37790527

ABSTRACT

Activity-induced gene expression underlies synaptic plasticity and brain function. Here, using molecular sequencing techniques, we define activity-dependent transcriptomic and epigenomic changes at the tissue and single-cell level in the human brain following direct electrical stimulation of the anterior temporal lobe in patients undergoing neurosurgery. Genes related to transcriptional regulation and microglia-specific cytokine activity displayed the greatest induction pattern, revealing a precise molecular signature of neuronal activation in the human brain.

6.
Nat Commun ; 14(1): 6100, 2023 09 29.
Article in English | MEDLINE | ID: mdl-37773230

ABSTRACT

Memory consolidation involves discrete patterns of transcriptional events in the hippocampus. Despite the emergence of single-cell transcriptomic profiling techniques, mapping the transcriptomic signature across subregions of the hippocampus has remained challenging. Here, we utilized unbiased spatial sequencing to delineate transcriptome-wide gene expression changes across subregions of the dorsal hippocampus of male mice following learning. We find that each subregion of the hippocampus exhibits distinct yet overlapping transcriptomic signatures. The CA1 region exhibited increased expression of genes related to transcriptional regulation, while the DG showed upregulation of genes associated with protein folding. Importantly, our approach enabled us to define the transcriptomic signature of learning within two less-defined hippocampal subregions, CA1 stratum radiatum, and oriens. We demonstrated that CA1 subregion-specific expression of a transcription factor subfamily has a critical functional role in the consolidation of long-term memory. This work demonstrates the power of spatial molecular approaches to reveal simultaneous transcriptional events across the hippocampus during memory consolidation.


Subject(s)
Memory Consolidation , Transcriptome , Male , Mice , Animals , Transcriptome/genetics , Hippocampus/physiology , CA1 Region, Hippocampal/metabolism , Learning
7.
Child Dev ; 94(4): 970-984, 2023.
Article in English | MEDLINE | ID: mdl-36780127

ABSTRACT

Handedness has been studied for association with language-related disorders because of its link with language hemispheric dominance. No clear pattern has emerged, possibly because of small samples, publication bias, and heterogeneous criteria across studies. Non-right-handedness (NRH) frequency was assessed in N = 2503 cases with reading and/or language impairment and N = 4316 sex-matched controls identified from 10 distinct cohorts (age range 6-19 years old; European ethnicity) using a priori set criteria. A meta-analysis (Ncases  = 1994) showed elevated NRH % in individuals with language/reading impairment compared with controls (OR = 1.21, CI = 1.06-1.39, p = .01). The association between reading/language impairments and NRH could result from shared pathways underlying brain lateralization, handedness, and cognitive functions.


Subject(s)
Functional Laterality , Reading , Humans , Child , Adolescent , Young Adult , Adult , Prevalence , Language , Brain
9.
bioRxiv ; 2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36711475

ABSTRACT

Memory consolidation involves discrete patterns of transcriptional events in the hippocampus. Despite the emergence of single-cell transcriptomic profiling techniques, defining learning-responsive gene expression across subregions of the hippocampus has remained challenging. Here, we utilized unbiased spatial sequencing to elucidate transcriptome-wide changes in gene expression in the hippocampus following learning, enabling us to define molecular signatures unique to each hippocampal subregion. We find that each subregion of the hippocampus exhibits distinct yet overlapping transcriptomic signatures. Although the CA1 region exhibited increased expression of genes related to transcriptional regulation, the DG showed upregulation of genes associated with protein folding. We demonstrate the functional relevance of subregion-specific gene expression by genetic manipulation of a transcription factor selectively in the CA1 hippocampal subregion, leading to long-term memory deficits. This work demonstrates the power of using spatial molecular approaches to reveal transcriptional events during memory consolidation.

10.
Am Psychol ; 78(7): 886-900, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36716136

ABSTRACT

Gender identity is a core component of human experience, critical to account for in broad health, development, psychosocial research, and clinical practice. Yet, the psychometric characterization of gender has been impeded due to challenges in modeling the myriad gender self-descriptors, statistical power limitations related to multigroup analyses, and equity-related concerns regarding the accessibility of complex gender terminology. Therefore, this initiative employed an iterative multi-community-driven process to develop the Gender Self-Report (GSR), a multidimensional gender characterization tool, accessible to youth and adults, nonautistic and autistic people, and gender-diverse and cisgender individuals. In Study 1, the GSR was administered to 1,654 individuals, sampled through seven diversified recruitments to be representative across age (10-77 years), gender and sexuality diversity (∼33% each gender diverse, cisgender sexual minority, cisgender heterosexual), and autism status (> 33% autistic). A random half-split subsample was subjected to exploratory factor analytics, followed by confirmatory analytics in the full sample. Two stable factors emerged: Nonbinary Gender Diversity and Female-Male Continuum (FMC). FMC was transformed to Binary Gender Diversity based on designated sex at birth to reduce collinearity with designated sex at birth. Differential item functioning by age and autism status was employed to reduce item-response bias. Factors were internally reliable. Study 2 demonstrated the construct, convergent, and ecological validity of GSR factors. Of the 30 hypothesized validation comparisons, 26 were confirmed. The GSR provides a community-developed gender advocacy tool with 30 self-report items that avoid complex gender-related "insider" language and characterize diverse populations across continuous multidimensional binary and nonbinary gender traits. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Subject(s)
Autistic Disorder , Sexual and Gender Minorities , Infant, Newborn , Humans , Female , Adolescent , Adult , Male , Child , Young Adult , Middle Aged , Aged , Gender Identity , Self Report , Sexual Behavior , Sexuality
11.
Neurobiol Learn Mem ; 197: 107698, 2023 01.
Article in English | MEDLINE | ID: mdl-36450307

ABSTRACT

Autism with co-occurring exceptional cognitive ability is often accompanied by severe internalizing symptoms and feelings of inadequacy. Whether cognitive ability also translates into greater risk for suicidal ideation is unclear. To investigate this urgent question, we examined two samples of high-ability autistic individuals for factors that were predictive of suicidal ideation. In the first sample (N = 1,074 individuals seen at a clinic specializing in gifted/talented youth), we observed a striking excess of parent-reported suicidal ideation in autistic individuals with IQ ≥ 120 (Odds Ratio = 5.9, p=0.0007). In a separate sample of SPARK participants, we confirmed higher rates of suicidal thoughts compared to non-autistic children from the ABCD cohort (combined N = 16,049, Odds Ratio = 6.8, p<2.2e-16), and further that autistic children with suicidal thoughts had significantly higher cognitive ability (p<2.2e-16) than those without. Elevated polygenic scores (PGS) for cognitive performance were associated with increased suicidal thoughts (N = 1,983, Z=2.16,p=0.03), with PGS for educational attainment trending in the same direction (Z=1.4,p=0.17). Notably, similar results were found in parents of these autistic youth, where higher PGS for educational attainment was associated with increasing thoughts of suicide (N = 736, Z=2.28,p=0.02). Taken together, these results suggest that on a phenotypic and genetic level, increasing cognitive ability is an unexpected risk factor for suicidal ideation in individuals diagnosed with, or at risk for autism.


Subject(s)
Autistic Disorder , Suicidal Ideation , Child , Adolescent , Humans , Autistic Disorder/psychology , Suicide, Attempted/psychology , Cognition , Emotions , Risk Factors
12.
Nat Genet ; 54(9): 1305-1319, 2022 09.
Article in English | MEDLINE | ID: mdl-35982159

ABSTRACT

To capture the full spectrum of genetic risk for autism, we performed a two-stage analysis of rare de novo and inherited coding variants in 42,607 autism cases, including 35,130 new cases recruited online by SPARK. We identified 60 genes with exome-wide significance (P < 2.5 × 10-6), including five new risk genes (NAV3, ITSN1, MARK2, SCAF1 and HNRNPUL2). The association of NAV3 with autism risk is primarily driven by rare inherited loss-of-function (LoF) variants, with an estimated relative risk of 4, consistent with moderate effect. Autistic individuals with LoF variants in the four moderate-risk genes (NAV3, ITSN1, SCAF1 and HNRNPUL2; n = 95) have less cognitive impairment than 129 autistic individuals with LoF variants in highly penetrant genes (CHD8, SCN2A, ADNP, FOXP1 and SHANK3) (59% vs 88%, P = 1.9 × 10-6). Power calculations suggest that much larger numbers of autism cases are needed to identify additional moderate-risk genes.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Autism Spectrum Disorder/genetics , Autistic Disorder/genetics , Exome/genetics , Forkhead Transcription Factors/genetics , Genetic Predisposition to Disease , Humans , Mutation , Repressor Proteins/genetics , Exome Sequencing
13.
Transl Psychiatry ; 12(1): 247, 2022 06 13.
Article in English | MEDLINE | ID: mdl-35697691

ABSTRACT

The complexity of autism's phenotypic spectra is well-known, yet most genetic research uses case-control status as the target trait. It is undetermined if autistic symptom domain severity underlying this heterogeneity is heritable and pleiotropic with other psychiatric and behavior traits in the same manner as autism case-control status. In N = 6064 autistic children in the SPARK cohort, we investigated the common genetic properties of twelve subscales from three clinical autism instruments measuring autistic traits: the Social Communication Questionnaire (SCQ), the Repetitive Behavior Scale-Revised (RBS-R), and the Developmental Coordination Disorder Questionnaire (DCDQ). Educational attainment polygenic scores (PGS) were significantly negatively correlated with eleven subscales, while ADHD and major depression PGS were positively correlated with ten and eight of the autism subscales, respectively. Loneliness and neuroticism PGS were also positively correlated with many subscales. Significant PGS by sex interactions were found-surprisingly, the autism case-control PGS was negatively correlated in females and had no strong correlation in males. SNP-heritability of the DCDQ subscales ranged from 0.04 to 0.08, RBS-R subscales ranged from 0.09 to 0.24, and SCQ subscales ranged from 0 to 0.12. GWAS in SPARK followed by estimation of polygenic scores (PGS) in the typically-developing ABCD cohort (N = 5285), revealed significant associations of RBS-R subscale PGS with autism-related behavioral traits, with several subscale PGS more strongly correlated than the autism case-control PGS. Overall, our analyses suggest that the clinical autism subscale traits show variability in SNP-heritability, PGS associations, and significant PGS by sex interactions, underscoring the heterogeneity in autistic traits at a genetic level. Furthermore, of the three instruments investigated, the RBS-R shows the greatest evidence of genetic signal in both (1) autistic samples (greater heritability) and (2) general population samples (strongest PGS associations).


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Autism Spectrum Disorder/psychology , Autistic Disorder/epidemiology , Autistic Disorder/genetics , Child , Communication , Female , Humans , Male , Multifactorial Inheritance , Phenotype
14.
J Neurodev Disord ; 14(1): 39, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35751013

ABSTRACT

BACKGROUND: Numerous genes are implicated in autism spectrum disorder (ASD). ASD encompasses a wide-range and severity of symptoms and co-occurring conditions; however, the details of how genetic variation contributes to phenotypic differences are unclear. This creates a challenge for translating genetic evidence into clinically useful knowledge. Sleep disturbances are particularly prevalent co-occurring conditions in ASD, and genetics may inform treatment. Identifying convergent mechanisms with evidence for dysfunction that connect ASD and sleep biology could help identify better treatments for sleep disturbances in these individuals. METHODS: To identify mechanisms that influence risk for ASD and co-occurring sleep disturbances, we analyzed whole exome sequence data from individuals in the Simons Simplex Collection (n = 2380). We predicted protein damaging variants (PDVs) in genes currently implicated in either ASD or sleep duration in typically developing children. We predicted a network of ASD-related proteins with direct evidence for interaction with sleep duration-related proteins encoded by genes with PDVs. Overrepresentation analyses of Gene Ontology-defined biological processes were conducted on the resulting gene set. We calculated the likelihood of dysfunction in the top overrepresented biological process. We then tested if scores reflecting genetic dysfunction in the process were associated with parent-reported sleep duration. RESULTS: There were 29 genes with PDVs in the ASD dataset where variation was reported in the literature to be associated with both ASD and sleep duration. A network of 108 proteins encoded by ASD and sleep duration candidate genes with PDVs was identified. The mechanism overrepresented in PDV-containing genes that encode proteins in the interaction network with the most evidence for dysfunction was cerebral cortex development (GO:0,021,987). Scores reflecting dysfunction in this process were associated with sleep durations; the largest effects were observed in adolescents (p = 4.65 × 10-3). CONCLUSIONS: Our bioinformatic-driven approach detected a biological process enriched for genes encoding a protein-protein interaction network linking ASD gene products with sleep duration gene products where accumulation of potentially damaging variants in individuals with ASD was associated with sleep duration as reported by the parents. Specifically, genetic dysfunction impacting development of the cerebral cortex may affect sleep by disrupting sleep homeostasis which is evidenced to be regulated by this brain region. Future functional assessments and objective measurements of sleep in adolescents with ASD could provide the basis for more informed treatment of sleep problems in these individuals.


Subject(s)
Autism Spectrum Disorder , Biological Phenomena , Sleep Wake Disorders , Adolescent , Autism Spectrum Disorder/complications , Autism Spectrum Disorder/genetics , Child , Exome/genetics , Humans , Sleep Wake Disorders/complications , Sleep Wake Disorders/genetics , Exome Sequencing
15.
iScience ; 25(2): 103814, 2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35198879

ABSTRACT

Proper gene regulation is critical for both neuronal development and maintenance as the brain matures. We previously demonstrated that Akirin2, an essential nuclear protein that interacts with transcription factors and chromatin remodeling complexes, is required for the embryonic formation of the cerebral cortex. Here we show that Akirin2 plays a mechanistically distinct role in maintaining healthy neurons during cortical maturation. Restricting Akirin2 loss to excitatory cortical neurons resulted in progressive neurodegeneration via necroptosis and severe cortical atrophy with age. Comparing transcriptomes from Akirin2-null postnatal neurons and cortical progenitors revealed that targets of the tumor suppressor p53, a regulator of both proliferation and cell death encoded by Trp53, were consistently upregulated. Reduction of Trp53 rescued neurodegeneration in Akirin2-null neurons. These data: (1) implicate Akirin2 as a critical neuronal maintenance protein, (2) identify p53 pathways as mediators of Akirin2 functions, and (3) suggest Akirin2 dysfunction may be relevant to neurodegenerative diseases.

16.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Article in English | MEDLINE | ID: mdl-34593624

ABSTRACT

The coronaviruses responsible for severe acute respiratory syndrome (SARS-CoV), COVID-19 (SARS-CoV-2), Middle East respiratory syndrome-CoV, and other coronavirus infections express a nucleocapsid protein (N) that is essential for viral replication, transcription, and virion assembly. Phosphorylation of N from SARS-CoV by glycogen synthase kinase 3 (GSK-3) is required for its function and inhibition of GSK-3 with lithium impairs N phosphorylation, viral transcription, and replication. Here we report that the SARS-CoV-2 N protein contains GSK-3 consensus sequences and that this motif is conserved in diverse coronaviruses, raising the possibility that SARS-CoV-2 may be sensitive to GSK-3 inhibitors, including lithium. We conducted a retrospective analysis of lithium use in patients from three major health systems who were PCR-tested for SARS-CoV-2. We found that patients taking lithium have a significantly reduced risk of COVID-19 (odds ratio = 0.51 [0.35-0.74], P = 0.005). We also show that the SARS-CoV-2 N protein is phosphorylated by GSK-3. Knockout of GSK3A and GSK3B demonstrates that GSK-3 is essential for N phosphorylation. Alternative GSK-3 inhibitors block N phosphorylation and impair replication in SARS-CoV-2 infected lung epithelial cells in a cell-type-dependent manner. Targeting GSK-3 may therefore provide an approach to treat COVID-19 and future coronavirus outbreaks.


Subject(s)
COVID-19/prevention & control , Coronavirus Nucleocapsid Proteins/metabolism , Glycogen Synthase Kinase 3/antagonists & inhibitors , Lithium Compounds/therapeutic use , Adult , Aged , Female , Glycogen Synthase Kinase 3/metabolism , HEK293 Cells , Humans , Lithium Compounds/pharmacology , Male , Middle Aged , Molecular Targeted Therapy , Phosphoproteins/metabolism , Phosphorylation/drug effects , Retrospective Studies
17.
Mol Brain ; 14(1): 125, 2021 08 12.
Article in English | MEDLINE | ID: mdl-34384474

ABSTRACT

Widespread sleep deprivation is a continuing public health problem in the United States and worldwide affecting adolescents and adults. Acute sleep deprivation results in decrements in spatial memory and cognitive impairments. The hippocampus is vulnerable to acute sleep deprivation with changes in gene expression, cell signaling, and protein synthesis. Sleep deprivation also has long lasting effects on memory and performance that persist after recovery sleep, as seen in behavioral studies from invertebrates to humans. Although previous research has shown that acute sleep deprivation impacts gene expression, the extent to which sleep deprivation affects gene regulation remains unknown. Using an unbiased deep RNA sequencing approach, we investigated the effects of acute sleep deprivation on gene expression in the hippocampus. We identified 1,146 genes that were significantly dysregulated following sleep deprivation with 507 genes upregulated and 639 genes downregulated, including protein coding genes and long non-coding RNAs not previously identified as impacted by sleep deprivation. Notably, genes significantly upregulated after sleep deprivation were associated with RNA splicing and the nucleus. In contrast, downregulated genes were associated with cell adhesion, dendritic localization, the synapse, and postsynaptic membrane. Furthermore, we found through independent experiments analyzing a subset of genes that three hours of recovery sleep following acute sleep deprivation was sufficient to normalize mRNA abundance for most genes, although exceptions occurred for some genes that may affect RNA splicing or transcription. These results clearly demonstrate that sleep deprivation differentially regulates gene expression on multiple transcriptomic levels to impact hippocampal function.


Subject(s)
Gene Expression Regulation , Hippocampus/metabolism , Sleep Deprivation/genetics , Transcriptome , Animals , Base Sequence , Cell Nucleus/metabolism , Cytoskeletal Proteins/genetics , Dendrites/metabolism , Gene Ontology , Male , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins/genetics , Neurons/metabolism , Protein Biosynthesis , RNA Splicing , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Sleep Deprivation/rehabilitation
18.
Front Psychiatry ; 12: 668297, 2021.
Article in English | MEDLINE | ID: mdl-34177659

ABSTRACT

This study is the first genetically-informed investigation of avoidant/restrictive food intake disorder (ARFID), an eating disorder that profoundly impacts quality of life for those affected. ARFID is highly comorbid with autism, and we provide the first estimate of its prevalence in a large and phenotypically diverse autism cohort (a subsample of the SPARK study, N = 5,157 probands). This estimate, 21% (at a balanced accuracy 80%), is at the upper end of previous estimates from studies based on clinical samples, suggesting under-diagnosis and potentially lack of awareness among caretakers and clinicians. Although some studies suggest a decrease of disordered eating symptoms by age 6, our estimates indicate that up to 17% (at a balanced accuracy 87%) of parents of autistic children are also at heightened risk for ARFID, suggesting a lifelong risk for disordered eating. We were also able to provide the first estimates of narrow-sense heritability (h2) for ARFID risk, at 0.45. Genome-wide association revealed a single hit near ZSWIM6, a gene previously implicated in neurodevelopmental conditions. While, the current sample was not well-powered for GWAS, effect size and heritability estimates allowed us to project the sample sizes necessary to more robustly discover ARFID-linked loci via common variants. Further genetic analysis using polygenic risk scores (PRS) affirmed genetic links to autism as well as neuroticism and metabolic syndrome.

19.
Mol Autism ; 12(1): 43, 2021 06 09.
Article in English | MEDLINE | ID: mdl-34108004

ABSTRACT

BACKGROUND: Neurodevelopmental disorders (NDDs) such as autism spectrum disorder (ASD) display a strong male bias. Androgen exposure is profoundly increased in typical male development, but it also varies within the sexes, and previous work has sought to connect morphological proxies of androgen exposure, including digit ratio and facial morphology, to neurodevelopmental outcomes. The results of these studies have been mixed, and the relationships between androgen exposure and behavior remain unclear. METHODS: Here, we measured both digit ratio masculinity (DRM) and facial landmark masculinity (FLM) in the same neurodevelopmental cohort (N = 763) and compared these proxies of androgen exposure to clinical and parent-reported features as well as polygenic risk scores. RESULTS: We found that FLM was significantly associated with NDD diagnosis (ASD, ADHD, ID; all [Formula: see text]), while DRM was not. When testing for association with parent-reported problems, we found that both FLM and DRM were positively associated with concerns about social behavior ([Formula: see text], [Formula: see text]; [Formula: see text], [Formula: see text], respectively). Furthermore, we found evidence via polygenic risk scores (PRS) that DRM indexes masculinity via testosterone levels ([Formula: see text], [Formula: see text]), while FLM indexes masculinity through a negative relationship with sex hormone binding globulin (SHBG) levels ([Formula: see text], [Formula: see text]). Finally, using the SPARK cohort (N = 9419) we replicated the observed relationship between polygenic estimates of testosterone, SHBG, and social functioning ([Formula: see text], [Formula: see text], and [Formula: see text], [Formula: see text] for testosterone and SHBG, respectively). Remarkably, when considered over the extremes of each variable, these quantitative sex effects on social functioning were comparable to the effect of binary sex itself (binary male: [Formula: see text]; testosterone: [Formula: see text] from 0.1%-ile to 99.9%-ile; SHBG: [Formula: see text] from 0.1%-ile to 99.9%-ile). LIMITATIONS: In the devGenes and SPARK cohorts, our analyses rely on indirect, rather than direct measurement of androgens and related molecules. CONCLUSIONS: These findings and their replication in the large SPARK cohort lend support to the hypothesis that increasing net androgen exposure diminishes capacity for social functioning in both males and females.


Subject(s)
Androgens , Autism Spectrum Disorder , Cohort Studies , Female , Humans , Male , Multifactorial Inheritance , Testosterone
20.
medRxiv ; 2021 Jul 21.
Article in English | MEDLINE | ID: mdl-33655282

ABSTRACT

The coronaviruses responsible for severe acute respiratory syndrome (SARS-CoV), COVID-19 (SARS-CoV-2), Middle East respiratory syndrome (MERS-CoV), and other coronavirus infections express a nucleocapsid protein (N) that is essential for viral replication, transcription, and virion assembly. Phosphorylation of N from SARS-CoV by glycogen synthase kinase 3 (GSK-3) is required for its function and inhibition of GSK-3 with lithium impairs N phosphorylation, viral transcription, and replication. Here we report that the SARS-CoV-2 N protein contains GSK-3 consensus sequences and that this motif is conserved in diverse coronaviruses, raising the possibility that SARS-CoV-2 may be sensitive to GSK-3 inhibitors including lithium. We conducted a retrospective analysis of lithium use in patients from three major health systems who were PCR tested for SARS-CoV-2. We found that patients taking lithium have a significantly reduced risk of COVID-19 (odds ratio = 0.51 [0.35 - 0.74], p = 0.005). We also show that the SARS-CoV-2 N protein is phosphorylated by GSK-3. Knockout of GSK3A and GSK3B demonstrates that GSK-3 is essential for N phosphorylation. Alternative GSK-3 inhibitors block N phosphorylation and impair replication in SARS-CoV-2 infected lung epithelial cells in a cell-type dependent manner. Targeting GSK-3 may therefore provide a new approach to treat COVID-19 and future coronavirus outbreaks. SIGNIFICANCE: COVID-19 is taking a major toll on personal health, healthcare systems, and the global economy. With three betacoronavirus epidemics in less than 20 years, there is an urgent need for therapies to combat new and existing coronavirus outbreaks. Our analysis of clinical data from over 300,000 patients in three major health systems demonstrates a 50% reduced risk of COVID-19 in patients taking lithium, a direct inhibitor of glycogen synthase kinase-3 (GSK-3). We further show that GSK-3 is essential for phosphorylation of the SARS-CoV-2 nucleocapsid protein and that GSK-3 inhibition blocks SARS-CoV-2 infection in human lung epithelial cells. These findings suggest an antiviral strategy for COVID-19 and new coronaviruses that may arise in the future.

SELECTION OF CITATIONS
SEARCH DETAIL
...