Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Opt Express ; 32(9): 15326-15335, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38859186

ABSTRACT

In this study we demonstrated a compact and cost-effective high energy and average power picosecond laser developed for OPCPA system pumping applications. The system delivered record high pulse energy at 100 W average power level in a hybrid laser architecture based on a fiber seed laser and free-space end-pumped Yb:YAG amplifiers. The output pulses were compressed to 1 ps pulse duration and the output beam featured M2 = 1.3, which was further improved to 1.07 by spatial filtering. A silica glass spatially variable wave plate manufactured by direct laser writing was used to reduce depolarization losses from 12% to 5%.

2.
Opt Express ; 30(20): 36849-36862, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36258606

ABSTRACT

Laser sources which produce GHz bursts of ultrashort pulses attract a lot of attention by demonstrating superior performance in material processing. Flexibility of the laser source in a selection of parameters for custom application is highly preferable. In this work, we demonstrate a very versatile method for burst formation using the active fiber loop (AFL). It allows forming GHz bursts containing from 2 up to approximately 2200 pulses in a burst (1000 ns burst width) with identical pulse separation and any predefined intra-burst pulse repetition rate (PRR). The burst pre-shaping by the amplification conditions in the AFL and by the modulation of transmission of the acousto-optic modulator was demonstrated. Industrial-grade ultrafast laser system was able to operate in the single-pulse and GHz-burst regimes. The laser system delivered high-quality 368 fs duration (FWHM) pulses of 15.3 µJ pulse energy and 30.6 W average output power at 2 MHz PRR in the single-pulse regime. In the GHz-burst operation regime, bursts of 2.2 GHz intra-burst repetition rate were formed and amplified to more than 30 W average output power with a burst energy up to 135 µJ at a burst repetition rate of 200 kHz. The sub-picosecond duration of pulses was obtained in the GHz-burst regime at different burst widths.

3.
Opt Express ; 29(16): 25344-25357, 2021 Aug 02.
Article in English | MEDLINE | ID: mdl-34614867

ABSTRACT

In this work, we present the development of a femtosecond tunable middle infrared (mid-IR) radiation source for the realization of a hybrid concept compact broadband high-resolution sum-frequency generation (SFG) spectroscopy system. For the realization of the new concept, we used a two-channel picosecond fiber laser as a seed for narrowband (∼1.5 cm-1) and broadband ultrafast radiation sources operating at 1 kHz repetition rate. In order to achieve >500 cm-1 bandwidth widely tunable microjoule level pulses in the mid-IR spectral region (2-10 µm), broadband femtosecond source optimization was performed. Numerical simulations with different nonlinear crystals and optical parametric amplification layouts at given fixed initial conditions paved a way to experimentally realize an optimal scheme for a femtosecond mid-IR channel. Fully operating SFG spectrometer setup was assembled and tested. The developed SFG spectrometer demonstrates a unique combination of parameters: excellent spectral resolution (<3 cm-1) similar to a narrowband scanning picosecond spectrometers and fast simultaneous acquisition of broadband spectra up to more than 850 cm-1.

4.
Appl Opt ; 60(24): 7164-7171, 2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34613003

ABSTRACT

A subpicosecond laser system featuring a fiber chirped pulse amplification-based seed laser and a double-pass end-pumped Yb:YAG crystal power amplifier was investigated. The key novelty of the system was the application of depolarization compensation using a specially designed spatially variable wave plate. To the best of our knowledge, this method was applied for the first time. The presented laser system produced pulses of 441 fs duration, 116 µJ pulse energy at 116 W average power with a beam quality of M2∼2.1, featured optical-to-optical efficiency of 32% at room temperature (T=20∘C), and had residual depolarization level of 2.7%.

5.
Opt Lett ; 45(24): 6627-6630, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33325855

ABSTRACT

We report efficient amplification of chirped supercontinuum pulses in a two-stage stimulated Raman amplifier based on double tungstate [KGd(WO4)2] crystals, pumped with 1.2 ps transform-limited pulses at a 1030 nm wavelength. The second stage demonstrates a conversion efficiency of 55% with an output pulse energy of 0.6 mJ at a 1135 nm wavelength. The amplified Stokes bandwidth is 10 times the pump bandwidth, providing 145 fs pulses after compression.

6.
Opt Express ; 28(9): 13059-13067, 2020 Apr 27.
Article in English | MEDLINE | ID: mdl-32403787

ABSTRACT

We demonstrate a method to synthesize ultra-high repetition rate bursts of ultrashort laser pulses containing any number of pulses within a burst with identical pulse separation and adjustable amplitude. The key element to synthesize the GHz bursts of ultrashort laser pulses is an active fiber loop. The method was implemented in the fiber chirped pulse amplification system to obtain 72 nJ-energy bursts of 20 pulses with a 2.65 GHz intra-burst pulse repetition rate and a 500 kHz burst repetition rate. The dispersion compensation mechanism ensured a mean pulse duration of 570 fs within the bursts.

7.
Opt Express ; 26(24): 31873-31879, 2018 Nov 26.
Article in English | MEDLINE | ID: mdl-30650766

ABSTRACT

In this work we presented a compact femtosecond laser system based on Yb doped fiber seed laser and efficient Yb:YAG crystal rod power amplifier. Matched pair of chirped fiber Bragg grating stretcher and chirped volume Bragg grating compressor were used to obtain high fidelity - Strehl ratio 76%, pulses of 764 fs duration, 104 µJ energy at 200 kHz repetition rate at the output of the laser system.

8.
Opt Express ; 25(17): 19856-19862, 2017 Aug 21.
Article in English | MEDLINE | ID: mdl-29041672

ABSTRACT

In this work, a compact fiber chirped pulse amplification system exploiting a tandem of a chirped fiber Bragg grating stretcher and a chirped volume Bragg grating compressor with matched chromatic dispersion is presented. Chirped pulses of 230 ps duration were amplified in a Yb-doped fiber amplifier and re-compressed to 208 fs duration with good fidelity. The compressed pulse duration was fine-tuned by temperature gradient along the fiber Bragg grating stretcher.

9.
Opt Express ; 25(5): 5797-5806, 2017 Mar 06.
Article in English | MEDLINE | ID: mdl-28380838

ABSTRACT

We present a high peak and average power optical parametric chirped pulse amplification system driven by diode-pumped Yb:KGW and Nd:YAG lasers running at 1 kHz repetition rate. The advanced architecture of the system allows us to achieve >53 W average power combined with 5.5 TW peak power, along with sub-220 mrad CEP stability and sub-9 fs pulse duration at a center wavelength around 880 nm. Broadband, background-free, passively CEP stabilized seed pulses are produced in a series of cascaded optical parametric amplifiers pumped by the Yb:KGW laser, while a diode-pumped Nd:YAG laser system provides multi-mJ pump pulses for power amplification stages. Excellent stability of output parameters over 16 hours of continuous operation is demonstrated.

10.
Opt Express ; 24(19): 22261-71, 2016 Sep 19.
Article in English | MEDLINE | ID: mdl-27661960

ABSTRACT

We report on the developed front-end/pump system for optical parametric chirped pulse amplifiers. The system is based on a dual output fiber oscillator/power amplifier which seeds and assures all-optical synchronization of femtosecond Yb and picosecond Nd laser amplifiers operating at a central wavelength of 1030 nm and 1064 nm, respectively. At the central wavelength of 1030 nm, the fiber oscillator generates partially stretched 4 ps pulses with the spectrum supporting a <120 fs pulse duration and pulse energy of 0.45 nJ. The energy of generated 1064 nm pulses is 0.15 nJ, which is sufficient for the efficient seeding of high-contrast Nd:YVO chirped pulse regenerative amplifier/post amplifier systems generating 9 mJ pulses compressible to 16 ps duration. The power amplification stages, based on Nd:YAG crystals, provide 62 mJ pulses compressible to 20 ps pulse duration at a repetition rate of 1 kHz. Further energy scaling currently is prevented by limited dimensions of the diffraction gratings, which, because of the fast progress in MLD grating manufacturing technologies is only a temporary obstacle.

11.
Opt Express ; 22(2): 1865-70, 2014 Jan 27.
Article in English | MEDLINE | ID: mdl-24515195

ABSTRACT

We present a compact TW-class OPCPA system operating at 800 nm. Broadband seed pulses are generated and pre-amplified to 25 µJ in a white light continuum seeded femtosecond NOPA. Amplification of the seed pulses to 35 mJ at a repetition rate of 10 Hz and compression to 9 fs is demonstrated.

12.
Opt Express ; 21(12): 14530-8, 2013 Jun 17.
Article in English | MEDLINE | ID: mdl-23787640

ABSTRACT

Optical aberrations induced in thin-disk laser elements with an undoped layer, performing as an anti-ASE cap, are analyzed. A numerical model, used for calculations of the optical path difference (OPD) induced by temperature distribution inside the laser element and by deformation of surfaces, was confirmed experimentally. Results of numerical modeling manifest that adding an undoped layer on the thin-disk has detrimental effect on the reflected laser beam brightness and scaling. It is also shown that brightness of a thin-disk laser may be enhanced by the use of the Gaussian pump beam profile.


Subject(s)
Artifacts , Lasers , Models, Theoretical , Computer Simulation , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Light , Scattering, Radiation
13.
Opt Express ; 17(18): 15700-8, 2009 Aug 31.
Article in English | MEDLINE | ID: mdl-19724569

ABSTRACT

Continuously pumped regenerative amplifiers are subject to energy instability at high pulse repetition rates due to period doubling bifurcation. Theoretical and experimental data are presented, in order to differentiate and understand instability effects in Nd:YVO4 regenerative amplifier, and possible techniques for performance optimization are analyzed. An increase in the seed pulse energy is demonstrated to improve amplification dynamics. Addition of a preamplifier is shown as an efficient way to achieve seed energy high enough to provide stable operation at repetition rates up to 200 kHz with average output power near the theoretical limit.

SELECTION OF CITATIONS
SEARCH DETAIL
...